Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
The Generalized Continuum Hypothesis
Sets satisfying the Generalized Continuum Hypothesis
fpwwe2lem1
Next ⟩
fpwwe2lem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
fpwwe2lem1
Description:
Lemma for
fpwwe2
.
(Contributed by
Mario Carneiro
, 15-May-2015)
Ref
Expression
Hypothesis
fpwwe2.1
⊢
W
=
x
r
|
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
∧
∀
y
∈
x
[
˙
r
-1
y
/
u
]
˙
u
F
r
∩
u
×
u
=
y
Assertion
fpwwe2lem1
⊢
W
⊆
𝒫
A
×
𝒫
A
×
A
Proof
Step
Hyp
Ref
Expression
1
fpwwe2.1
⊢
W
=
x
r
|
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
∧
∀
y
∈
x
[
˙
r
-1
y
/
u
]
˙
u
F
r
∩
u
×
u
=
y
2
simpll
⊢
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
∧
∀
y
∈
x
[
˙
r
-1
y
/
u
]
˙
u
F
r
∩
u
×
u
=
y
→
x
⊆
A
3
velpw
⊢
x
∈
𝒫
A
↔
x
⊆
A
4
2
3
sylibr
⊢
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
∧
∀
y
∈
x
[
˙
r
-1
y
/
u
]
˙
u
F
r
∩
u
×
u
=
y
→
x
∈
𝒫
A
5
simplr
⊢
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
∧
∀
y
∈
x
[
˙
r
-1
y
/
u
]
˙
u
F
r
∩
u
×
u
=
y
→
r
⊆
x
×
x
6
xpss12
⊢
x
⊆
A
∧
x
⊆
A
→
x
×
x
⊆
A
×
A
7
2
2
6
syl2anc
⊢
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
∧
∀
y
∈
x
[
˙
r
-1
y
/
u
]
˙
u
F
r
∩
u
×
u
=
y
→
x
×
x
⊆
A
×
A
8
5
7
sstrd
⊢
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
∧
∀
y
∈
x
[
˙
r
-1
y
/
u
]
˙
u
F
r
∩
u
×
u
=
y
→
r
⊆
A
×
A
9
velpw
⊢
r
∈
𝒫
A
×
A
↔
r
⊆
A
×
A
10
8
9
sylibr
⊢
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
∧
∀
y
∈
x
[
˙
r
-1
y
/
u
]
˙
u
F
r
∩
u
×
u
=
y
→
r
∈
𝒫
A
×
A
11
4
10
jca
⊢
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
∧
∀
y
∈
x
[
˙
r
-1
y
/
u
]
˙
u
F
r
∩
u
×
u
=
y
→
x
∈
𝒫
A
∧
r
∈
𝒫
A
×
A
12
11
ssopab2i
⊢
x
r
|
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
∧
∀
y
∈
x
[
˙
r
-1
y
/
u
]
˙
u
F
r
∩
u
×
u
=
y
⊆
x
r
|
x
∈
𝒫
A
∧
r
∈
𝒫
A
×
A
13
df-xp
⊢
𝒫
A
×
𝒫
A
×
A
=
x
r
|
x
∈
𝒫
A
∧
r
∈
𝒫
A
×
A
14
12
1
13
3sstr4i
⊢
W
⊆
𝒫
A
×
𝒫
A
×
A