Metamath Proof Explorer


Theorem fpwwe2lem3

Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 19-May-2015) (Revised by AV, 20-Jul-2024)

Ref Expression
Hypotheses fpwwe2.1 W = x r | x A r x × x r We x y x [˙ r -1 y / u]˙ u F r u × u = y
fpwwe2.2 φ A V
fpwwe2lem3.4 φ X W R
Assertion fpwwe2lem3 φ B X R -1 B F R R -1 B × R -1 B = B

Proof

Step Hyp Ref Expression
1 fpwwe2.1 W = x r | x A r x × x r We x y x [˙ r -1 y / u]˙ u F r u × u = y
2 fpwwe2.2 φ A V
3 fpwwe2lem3.4 φ X W R
4 1 2 fpwwe2lem2 φ X W R X A R X × X R We X y X [˙ R -1 y / u]˙ u F R u × u = y
5 3 4 mpbid φ X A R X × X R We X y X [˙ R -1 y / u]˙ u F R u × u = y
6 5 simprrd φ y X [˙ R -1 y / u]˙ u F R u × u = y
7 sneq y = B y = B
8 7 imaeq2d y = B R -1 y = R -1 B
9 eqeq2 y = B u F R u × u = y u F R u × u = B
10 8 9 sbceqbid y = B [˙ R -1 y / u]˙ u F R u × u = y [˙ R -1 B / u]˙ u F R u × u = B
11 10 rspccva y X [˙ R -1 y / u]˙ u F R u × u = y B X [˙ R -1 B / u]˙ u F R u × u = B
12 6 11 sylan φ B X [˙ R -1 B / u]˙ u F R u × u = B
13 cnvimass R -1 B dom R
14 1 relopabiv Rel W
15 14 brrelex2i X W R R V
16 dmexg R V dom R V
17 3 15 16 3syl φ dom R V
18 ssexg R -1 B dom R dom R V R -1 B V
19 13 17 18 sylancr φ R -1 B V
20 id u = R -1 B u = R -1 B
21 20 sqxpeqd u = R -1 B u × u = R -1 B × R -1 B
22 21 ineq2d u = R -1 B R u × u = R R -1 B × R -1 B
23 20 22 oveq12d u = R -1 B u F R u × u = R -1 B F R R -1 B × R -1 B
24 23 eqeq1d u = R -1 B u F R u × u = B R -1 B F R R -1 B × R -1 B = B
25 24 sbcieg R -1 B V [˙ R -1 B / u]˙ u F R u × u = B R -1 B F R R -1 B × R -1 B = B
26 19 25 syl φ [˙ R -1 B / u]˙ u F R u × u = B R -1 B F R R -1 B × R -1 B = B
27 26 adantr φ B X [˙ R -1 B / u]˙ u F R u × u = B R -1 B F R R -1 B × R -1 B = B
28 12 27 mpbid φ B X R -1 B F R R -1 B × R -1 B = B