Metamath Proof Explorer


Theorem fpwwe2lem5

Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 18-May-2015) (Revised by AV, 20-Jul-2024)

Ref Expression
Hypotheses fpwwe2.1 W = x r | x A r x × x r We x y x [˙ r -1 y / u]˙ u F r u × u = y
fpwwe2.2 φ A V
fpwwe2.3 φ x A r x × x r We x x F r A
fpwwe2lem8.x φ X W R
fpwwe2lem8.y φ Y W S
fpwwe2lem8.m M = OrdIso R X
fpwwe2lem8.n N = OrdIso S Y
fpwwe2lem5.1 φ B dom M
fpwwe2lem5.2 φ B dom N
fpwwe2lem5.3 φ M B = N B
Assertion fpwwe2lem5 φ C R M B C X C Y M -1 C = N -1 C

Proof

Step Hyp Ref Expression
1 fpwwe2.1 W = x r | x A r x × x r We x y x [˙ r -1 y / u]˙ u F r u × u = y
2 fpwwe2.2 φ A V
3 fpwwe2.3 φ x A r x × x r We x x F r A
4 fpwwe2lem8.x φ X W R
5 fpwwe2lem8.y φ Y W S
6 fpwwe2lem8.m M = OrdIso R X
7 fpwwe2lem8.n N = OrdIso S Y
8 fpwwe2lem5.1 φ B dom M
9 fpwwe2lem5.2 φ B dom N
10 fpwwe2lem5.3 φ M B = N B
11 1 2 fpwwe2lem2 φ X W R X A R X × X R We X y X [˙ R -1 y / u]˙ u F R u × u = y
12 4 11 mpbid φ X A R X × X R We X y X [˙ R -1 y / u]˙ u F R u × u = y
13 12 simplrd φ R X × X
14 13 ssbrd φ C R M B C X × X M B
15 brxp C X × X M B C X M B X
16 15 simplbi C X × X M B C X
17 14 16 syl6 φ C R M B C X
18 17 imp φ C R M B C X
19 imassrn N B ran N
20 1 relopabiv Rel W
21 20 brrelex1i Y W S Y V
22 5 21 syl φ Y V
23 1 2 fpwwe2lem2 φ Y W S Y A S Y × Y S We Y y Y [˙ S -1 y / u]˙ u F S u × u = y
24 5 23 mpbid φ Y A S Y × Y S We Y y Y [˙ S -1 y / u]˙ u F S u × u = y
25 24 simprld φ S We Y
26 7 oiiso Y V S We Y N Isom E , S dom N Y
27 22 25 26 syl2anc φ N Isom E , S dom N Y
28 27 adantr φ C R M B N Isom E , S dom N Y
29 isof1o N Isom E , S dom N Y N : dom N 1-1 onto Y
30 28 29 syl φ C R M B N : dom N 1-1 onto Y
31 f1ofo N : dom N 1-1 onto Y N : dom N onto Y
32 forn N : dom N onto Y ran N = Y
33 30 31 32 3syl φ C R M B ran N = Y
34 19 33 sseqtrid φ C R M B N B Y
35 20 brrelex1i X W R X V
36 4 35 syl φ X V
37 12 simprld φ R We X
38 6 oiiso X V R We X M Isom E , R dom M X
39 36 37 38 syl2anc φ M Isom E , R dom M X
40 39 adantr φ C R M B M Isom E , R dom M X
41 isof1o M Isom E , R dom M X M : dom M 1-1 onto X
42 40 41 syl φ C R M B M : dom M 1-1 onto X
43 f1ocnvfv2 M : dom M 1-1 onto X C X M M -1 C = C
44 42 18 43 syl2anc φ C R M B M M -1 C = C
45 simpr φ C R M B C R M B
46 44 45 eqbrtrd φ C R M B M M -1 C R M B
47 f1ocnv M : dom M 1-1 onto X M -1 : X 1-1 onto dom M
48 f1of M -1 : X 1-1 onto dom M M -1 : X dom M
49 42 47 48 3syl φ C R M B M -1 : X dom M
50 49 18 ffvelrnd φ C R M B M -1 C dom M
51 8 adantr φ C R M B B dom M
52 isorel M Isom E , R dom M X M -1 C dom M B dom M M -1 C E B M M -1 C R M B
53 40 50 51 52 syl12anc φ C R M B M -1 C E B M M -1 C R M B
54 46 53 mpbird φ C R M B M -1 C E B
55 epelg B dom M M -1 C E B M -1 C B
56 51 55 syl φ C R M B M -1 C E B M -1 C B
57 54 56 mpbid φ C R M B M -1 C B
58 ffn M -1 : X dom M M -1 Fn X
59 elpreima M -1 Fn X C M -1 -1 B C X M -1 C B
60 49 58 59 3syl φ C R M B C M -1 -1 B C X M -1 C B
61 18 57 60 mpbir2and φ C R M B C M -1 -1 B
62 imacnvcnv M -1 -1 B = M B
63 61 62 eleqtrdi φ C R M B C M B
64 10 adantr φ C R M B M B = N B
65 64 rneqd φ C R M B ran M B = ran N B
66 df-ima M B = ran M B
67 df-ima N B = ran N B
68 65 66 67 3eqtr4g φ C R M B M B = N B
69 63 68 eleqtrd φ C R M B C N B
70 34 69 sseldd φ C R M B C Y
71 64 cnveqd φ C R M B M B -1 = N B -1
72 dff1o3 M : dom M 1-1 onto X M : dom M onto X Fun M -1
73 72 simprbi M : dom M 1-1 onto X Fun M -1
74 funcnvres Fun M -1 M B -1 = M -1 M B
75 42 73 74 3syl φ C R M B M B -1 = M -1 M B
76 dff1o3 N : dom N 1-1 onto Y N : dom N onto Y Fun N -1
77 76 simprbi N : dom N 1-1 onto Y Fun N -1
78 funcnvres Fun N -1 N B -1 = N -1 N B
79 30 77 78 3syl φ C R M B N B -1 = N -1 N B
80 71 75 79 3eqtr3d φ C R M B M -1 M B = N -1 N B
81 80 fveq1d φ C R M B M -1 M B C = N -1 N B C
82 63 fvresd φ C R M B M -1 M B C = M -1 C
83 69 fvresd φ C R M B N -1 N B C = N -1 C
84 81 82 83 3eqtr3d φ C R M B M -1 C = N -1 C
85 18 70 84 3jca φ C R M B C X C Y M -1 C = N -1 C