Metamath Proof Explorer


Theorem fpwwe2lem6

Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 18-May-2015) (Revised by AV, 20-Jul-2024)

Ref Expression
Hypotheses fpwwe2.1 W = x r | x A r x × x r We x y x [˙ r -1 y / u]˙ u F r u × u = y
fpwwe2.2 φ A V
fpwwe2.3 φ x A r x × x r We x x F r A
fpwwe2lem8.x φ X W R
fpwwe2lem8.y φ Y W S
fpwwe2lem8.m M = OrdIso R X
fpwwe2lem8.n N = OrdIso S Y
fpwwe2lem5.1 φ B dom M
fpwwe2lem5.2 φ B dom N
fpwwe2lem5.3 φ M B = N B
Assertion fpwwe2lem6 φ C R M B C S N B D R M B C R D C S D

Proof

Step Hyp Ref Expression
1 fpwwe2.1 W = x r | x A r x × x r We x y x [˙ r -1 y / u]˙ u F r u × u = y
2 fpwwe2.2 φ A V
3 fpwwe2.3 φ x A r x × x r We x x F r A
4 fpwwe2lem8.x φ X W R
5 fpwwe2lem8.y φ Y W S
6 fpwwe2lem8.m M = OrdIso R X
7 fpwwe2lem8.n N = OrdIso S Y
8 fpwwe2lem5.1 φ B dom M
9 fpwwe2lem5.2 φ B dom N
10 fpwwe2lem5.3 φ M B = N B
11 1 relopabiv Rel W
12 11 brrelex1i Y W S Y V
13 5 12 syl φ Y V
14 1 2 fpwwe2lem2 φ Y W S Y A S Y × Y S We Y y Y [˙ S -1 y / u]˙ u F S u × u = y
15 5 14 mpbid φ Y A S Y × Y S We Y y Y [˙ S -1 y / u]˙ u F S u × u = y
16 15 simprld φ S We Y
17 7 oiiso Y V S We Y N Isom E , S dom N Y
18 13 16 17 syl2anc φ N Isom E , S dom N Y
19 18 adantr φ C R M B N Isom E , S dom N Y
20 isof1o N Isom E , S dom N Y N : dom N 1-1 onto Y
21 19 20 syl φ C R M B N : dom N 1-1 onto Y
22 1 2 3 4 5 6 7 8 9 10 fpwwe2lem5 φ C R M B C X C Y M -1 C = N -1 C
23 22 simp2d φ C R M B C Y
24 f1ocnvfv2 N : dom N 1-1 onto Y C Y N N -1 C = C
25 21 23 24 syl2anc φ C R M B N N -1 C = C
26 22 simp3d φ C R M B M -1 C = N -1 C
27 11 brrelex1i X W R X V
28 4 27 syl φ X V
29 1 2 fpwwe2lem2 φ X W R X A R X × X R We X y X [˙ R -1 y / u]˙ u F R u × u = y
30 4 29 mpbid φ X A R X × X R We X y X [˙ R -1 y / u]˙ u F R u × u = y
31 30 simprld φ R We X
32 6 oiiso X V R We X M Isom E , R dom M X
33 28 31 32 syl2anc φ M Isom E , R dom M X
34 33 adantr φ C R M B M Isom E , R dom M X
35 isof1o M Isom E , R dom M X M : dom M 1-1 onto X
36 34 35 syl φ C R M B M : dom M 1-1 onto X
37 22 simp1d φ C R M B C X
38 f1ocnvfv2 M : dom M 1-1 onto X C X M M -1 C = C
39 36 37 38 syl2anc φ C R M B M M -1 C = C
40 simpr φ C R M B C R M B
41 39 40 eqbrtrd φ C R M B M M -1 C R M B
42 f1ocnv M : dom M 1-1 onto X M -1 : X 1-1 onto dom M
43 f1of M -1 : X 1-1 onto dom M M -1 : X dom M
44 36 42 43 3syl φ C R M B M -1 : X dom M
45 44 37 ffvelrnd φ C R M B M -1 C dom M
46 8 adantr φ C R M B B dom M
47 isorel M Isom E , R dom M X M -1 C dom M B dom M M -1 C E B M M -1 C R M B
48 34 45 46 47 syl12anc φ C R M B M -1 C E B M M -1 C R M B
49 41 48 mpbird φ C R M B M -1 C E B
50 26 49 eqbrtrrd φ C R M B N -1 C E B
51 f1ocnv N : dom N 1-1 onto Y N -1 : Y 1-1 onto dom N
52 f1of N -1 : Y 1-1 onto dom N N -1 : Y dom N
53 21 51 52 3syl φ C R M B N -1 : Y dom N
54 53 23 ffvelrnd φ C R M B N -1 C dom N
55 9 adantr φ C R M B B dom N
56 isorel N Isom E , S dom N Y N -1 C dom N B dom N N -1 C E B N N -1 C S N B
57 19 54 55 56 syl12anc φ C R M B N -1 C E B N N -1 C S N B
58 50 57 mpbid φ C R M B N N -1 C S N B
59 25 58 eqbrtrrd φ C R M B C S N B
60 26 adantrr φ C R M B D R M B M -1 C = N -1 C
61 1 2 3 4 5 6 7 8 9 10 fpwwe2lem5 φ D R M B D X D Y M -1 D = N -1 D
62 61 simp3d φ D R M B M -1 D = N -1 D
63 62 adantrl φ C R M B D R M B M -1 D = N -1 D
64 60 63 breq12d φ C R M B D R M B M -1 C E M -1 D N -1 C E N -1 D
65 33 adantr φ C R M B D R M B M Isom E , R dom M X
66 isocnv M Isom E , R dom M X M -1 Isom R , E X dom M
67 65 66 syl φ C R M B D R M B M -1 Isom R , E X dom M
68 37 adantrr φ C R M B D R M B C X
69 30 simplrd φ R X × X
70 69 ssbrd φ D R M B D X × X M B
71 70 imp φ D R M B D X × X M B
72 brxp D X × X M B D X M B X
73 72 simplbi D X × X M B D X
74 71 73 syl φ D R M B D X
75 74 adantrl φ C R M B D R M B D X
76 isorel M -1 Isom R , E X dom M C X D X C R D M -1 C E M -1 D
77 67 68 75 76 syl12anc φ C R M B D R M B C R D M -1 C E M -1 D
78 18 adantr φ C R M B D R M B N Isom E , S dom N Y
79 isocnv N Isom E , S dom N Y N -1 Isom S , E Y dom N
80 78 79 syl φ C R M B D R M B N -1 Isom S , E Y dom N
81 23 adantrr φ C R M B D R M B C Y
82 61 simp2d φ D R M B D Y
83 82 adantrl φ C R M B D R M B D Y
84 isorel N -1 Isom S , E Y dom N C Y D Y C S D N -1 C E N -1 D
85 80 81 83 84 syl12anc φ C R M B D R M B C S D N -1 C E N -1 D
86 64 77 85 3bitr4d φ C R M B D R M B C R D C S D
87 86 expr φ C R M B D R M B C R D C S D
88 59 87 jca φ C R M B C S N B D R M B C R D C S D