Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
|
2 |
|
fpwwe2.2 |
|
3 |
|
fpwwe2.3 |
|
4 |
|
fpwwe2lem8.x |
|
5 |
|
fpwwe2lem8.y |
|
6 |
|
fpwwe2lem8.m |
|
7 |
|
fpwwe2lem8.n |
|
8 |
|
fpwwe2lem5.1 |
|
9 |
|
fpwwe2lem5.2 |
|
10 |
|
fpwwe2lem5.3 |
|
11 |
1
|
relopabiv |
|
12 |
11
|
brrelex1i |
|
13 |
5 12
|
syl |
|
14 |
1 2
|
fpwwe2lem2 |
|
15 |
5 14
|
mpbid |
|
16 |
15
|
simprld |
|
17 |
7
|
oiiso |
|
18 |
13 16 17
|
syl2anc |
|
19 |
18
|
adantr |
|
20 |
|
isof1o |
|
21 |
19 20
|
syl |
|
22 |
1 2 3 4 5 6 7 8 9 10
|
fpwwe2lem5 |
|
23 |
22
|
simp2d |
|
24 |
|
f1ocnvfv2 |
|
25 |
21 23 24
|
syl2anc |
|
26 |
22
|
simp3d |
|
27 |
11
|
brrelex1i |
|
28 |
4 27
|
syl |
|
29 |
1 2
|
fpwwe2lem2 |
|
30 |
4 29
|
mpbid |
|
31 |
30
|
simprld |
|
32 |
6
|
oiiso |
|
33 |
28 31 32
|
syl2anc |
|
34 |
33
|
adantr |
|
35 |
|
isof1o |
|
36 |
34 35
|
syl |
|
37 |
22
|
simp1d |
|
38 |
|
f1ocnvfv2 |
|
39 |
36 37 38
|
syl2anc |
|
40 |
|
simpr |
|
41 |
39 40
|
eqbrtrd |
|
42 |
|
f1ocnv |
|
43 |
|
f1of |
|
44 |
36 42 43
|
3syl |
|
45 |
44 37
|
ffvelrnd |
|
46 |
8
|
adantr |
|
47 |
|
isorel |
|
48 |
34 45 46 47
|
syl12anc |
|
49 |
41 48
|
mpbird |
|
50 |
26 49
|
eqbrtrrd |
|
51 |
|
f1ocnv |
|
52 |
|
f1of |
|
53 |
21 51 52
|
3syl |
|
54 |
53 23
|
ffvelrnd |
|
55 |
9
|
adantr |
|
56 |
|
isorel |
|
57 |
19 54 55 56
|
syl12anc |
|
58 |
50 57
|
mpbid |
|
59 |
25 58
|
eqbrtrrd |
|
60 |
26
|
adantrr |
|
61 |
1 2 3 4 5 6 7 8 9 10
|
fpwwe2lem5 |
|
62 |
61
|
simp3d |
|
63 |
62
|
adantrl |
|
64 |
60 63
|
breq12d |
|
65 |
33
|
adantr |
|
66 |
|
isocnv |
|
67 |
65 66
|
syl |
|
68 |
37
|
adantrr |
|
69 |
30
|
simplrd |
|
70 |
69
|
ssbrd |
|
71 |
70
|
imp |
|
72 |
|
brxp |
|
73 |
72
|
simplbi |
|
74 |
71 73
|
syl |
|
75 |
74
|
adantrl |
|
76 |
|
isorel |
|
77 |
67 68 75 76
|
syl12anc |
|
78 |
18
|
adantr |
|
79 |
|
isocnv |
|
80 |
78 79
|
syl |
|
81 |
23
|
adantrr |
|
82 |
61
|
simp2d |
|
83 |
82
|
adantrl |
|
84 |
|
isorel |
|
85 |
80 81 83 84
|
syl12anc |
|
86 |
64 77 85
|
3bitr4d |
|
87 |
86
|
expr |
|
88 |
59 87
|
jca |
|