Metamath Proof Explorer


Theorem fpwwecbv

Description: Lemma for fpwwe . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypothesis fpwwe.1 W = x r | x A r x × x r We x y x F r -1 y = y
Assertion fpwwecbv W = a s | a A s a × a s We a z a F s -1 z = z

Proof

Step Hyp Ref Expression
1 fpwwe.1 W = x r | x A r x × x r We x y x F r -1 y = y
2 simpl x = a r = s x = a
3 2 sseq1d x = a r = s x A a A
4 simpr x = a r = s r = s
5 2 sqxpeqd x = a r = s x × x = a × a
6 4 5 sseq12d x = a r = s r x × x s a × a
7 3 6 anbi12d x = a r = s x A r x × x a A s a × a
8 weeq2 x = a r We x r We a
9 weeq1 r = s r We a s We a
10 8 9 sylan9bb x = a r = s r We x s We a
11 sneq y = z y = z
12 11 imaeq2d y = z r -1 y = r -1 z
13 12 fveq2d y = z F r -1 y = F r -1 z
14 id y = z y = z
15 13 14 eqeq12d y = z F r -1 y = y F r -1 z = z
16 15 cbvralvw y x F r -1 y = y z x F r -1 z = z
17 4 cnveqd x = a r = s r -1 = s -1
18 17 imaeq1d x = a r = s r -1 z = s -1 z
19 18 fveqeq2d x = a r = s F r -1 z = z F s -1 z = z
20 2 19 raleqbidv x = a r = s z x F r -1 z = z z a F s -1 z = z
21 16 20 syl5bb x = a r = s y x F r -1 y = y z a F s -1 z = z
22 10 21 anbi12d x = a r = s r We x y x F r -1 y = y s We a z a F s -1 z = z
23 7 22 anbi12d x = a r = s x A r x × x r We x y x F r -1 y = y a A s a × a s We a z a F s -1 z = z
24 23 cbvopabv x r | x A r x × x r We x y x F r -1 y = y = a s | a A s a × a s We a z a F s -1 z = z
25 1 24 eqtri W = a s | a A s a × a s We a z a F s -1 z = z