Metamath Proof Explorer


Theorem fr0

Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993)

Ref Expression
Assertion fr0 R Fr

Proof

Step Hyp Ref Expression
1 dffr2 R Fr x x x y x z x | z R y =
2 ss0 x x =
3 2 a1d x ¬ y x z x | z R y = x =
4 3 necon1ad x x y x z x | z R y =
5 4 imp x x y x z x | z R y =
6 1 5 mpgbir R Fr