Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Founded and well-ordering relations
fr0
Next ⟩
frminex
Metamath Proof Explorer
Ascii
Unicode
Theorem
fr0
Description:
Any relation is well-founded on the empty set.
(Contributed by
NM
, 17-Sep-1993)
Ref
Expression
Assertion
fr0
⊢
R
Fr
∅
Proof
Step
Hyp
Ref
Expression
1
dffr2
⊢
R
Fr
∅
↔
∀
x
x
⊆
∅
∧
x
≠
∅
→
∃
y
∈
x
z
∈
x
|
z
R
y
=
∅
2
ss0
⊢
x
⊆
∅
→
x
=
∅
3
2
a1d
⊢
x
⊆
∅
→
¬
∃
y
∈
x
z
∈
x
|
z
R
y
=
∅
→
x
=
∅
4
3
necon1ad
⊢
x
⊆
∅
→
x
≠
∅
→
∃
y
∈
x
z
∈
x
|
z
R
y
=
∅
5
4
imp
⊢
x
⊆
∅
∧
x
≠
∅
→
∃
y
∈
x
z
∈
x
|
z
R
y
=
∅
6
1
5
mpgbir
⊢
R
Fr
∅