Metamath Proof Explorer


Theorem fr0g

Description: The initial value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996)

Ref Expression
Assertion fr0g ABrecFAω=A

Proof

Step Hyp Ref Expression
1 peano1 ω
2 fvres ωrecFAω=recFA
3 1 2 ax-mp recFAω=recFA
4 rdg0g ABrecFA=A
5 3 4 eqtrid ABrecFAω=A