Metamath Proof Explorer


Theorem fr2nr

Description: A well-founded relation has no 2-cycle loops. Special case of Proposition 6.23 of TakeutiZaring p. 30. (Contributed by NM, 30-May-1994) (Revised by Mario Carneiro, 22-Jun-2015)

Ref Expression
Assertion fr2nr R Fr A B A C A ¬ B R C C R B

Proof

Step Hyp Ref Expression
1 prex B C V
2 1 a1i R Fr A B A C A B C V
3 simpl R Fr A B A C A R Fr A
4 prssi B A C A B C A
5 4 adantl R Fr A B A C A B C A
6 prnzg B A B C
7 6 ad2antrl R Fr A B A C A B C
8 fri B C V R Fr A B C A B C y B C x B C ¬ x R y
9 2 3 5 7 8 syl22anc R Fr A B A C A y B C x B C ¬ x R y
10 breq2 y = B x R y x R B
11 10 notbid y = B ¬ x R y ¬ x R B
12 11 ralbidv y = B x B C ¬ x R y x B C ¬ x R B
13 breq2 y = C x R y x R C
14 13 notbid y = C ¬ x R y ¬ x R C
15 14 ralbidv y = C x B C ¬ x R y x B C ¬ x R C
16 12 15 rexprg B A C A y B C x B C ¬ x R y x B C ¬ x R B x B C ¬ x R C
17 16 adantl R Fr A B A C A y B C x B C ¬ x R y x B C ¬ x R B x B C ¬ x R C
18 9 17 mpbid R Fr A B A C A x B C ¬ x R B x B C ¬ x R C
19 prid2g C A C B C
20 19 ad2antll R Fr A B A C A C B C
21 breq1 x = C x R B C R B
22 21 notbid x = C ¬ x R B ¬ C R B
23 22 rspcv C B C x B C ¬ x R B ¬ C R B
24 20 23 syl R Fr A B A C A x B C ¬ x R B ¬ C R B
25 prid1g B A B B C
26 25 ad2antrl R Fr A B A C A B B C
27 breq1 x = B x R C B R C
28 27 notbid x = B ¬ x R C ¬ B R C
29 28 rspcv B B C x B C ¬ x R C ¬ B R C
30 26 29 syl R Fr A B A C A x B C ¬ x R C ¬ B R C
31 24 30 orim12d R Fr A B A C A x B C ¬ x R B x B C ¬ x R C ¬ C R B ¬ B R C
32 18 31 mpd R Fr A B A C A ¬ C R B ¬ B R C
33 32 orcomd R Fr A B A C A ¬ B R C ¬ C R B
34 ianor ¬ B R C C R B ¬ B R C ¬ C R B
35 33 34 sylibr R Fr A B A C A ¬ B R C C R B