Metamath Proof Explorer


Theorem frc

Description: Property of well-founded relation (one direction of definition using class variables). (Contributed by NM, 17-Feb-2004) (Revised by Mario Carneiro, 19-Nov-2014)

Ref Expression
Hypothesis frc.1 B V
Assertion frc R Fr A B A B x B y B | y R x =

Proof

Step Hyp Ref Expression
1 frc.1 B V
2 fri B V R Fr A B A B x B z B ¬ z R x
3 1 2 mpanl1 R Fr A B A B x B z B ¬ z R x
4 3 3impb R Fr A B A B x B z B ¬ z R x
5 breq1 y = z y R x z R x
6 5 rabeq0w y B | y R x = z B ¬ z R x
7 6 rexbii x B y B | y R x = x B z B ¬ z R x
8 4 7 sylibr R Fr A B A B x B y B | y R x =