Metamath Proof Explorer


Theorem frcond2

Description: The friendship condition: any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 29-Mar-2021)

Ref Expression
Hypotheses frcond1.v V = Vtx G
frcond1.e E = Edg G
Assertion frcond2 G FriendGraph A V C V A C ∃! b V A b E b C E

Proof

Step Hyp Ref Expression
1 frcond1.v V = Vtx G
2 frcond1.e E = Edg G
3 1 2 frcond1 G FriendGraph A V C V A C ∃! b V A b b C E
4 prex A b V
5 prex b C V
6 4 5 prss A b E b C E A b b C E
7 6 bicomi A b b C E A b E b C E
8 7 reubii ∃! b V A b b C E ∃! b V A b E b C E
9 3 8 syl6ib G FriendGraph A V C V A C ∃! b V A b E b C E