Step |
Hyp |
Ref |
Expression |
1 |
|
frcond1.v |
|
2 |
|
frcond1.e |
|
3 |
1 2
|
frcond1 |
|
4 |
3
|
imp |
|
5 |
|
ssrab2 |
|
6 |
|
sseq1 |
|
7 |
5 6
|
mpbii |
|
8 |
|
vex |
|
9 |
8
|
snss |
|
10 |
7 9
|
sylibr |
|
11 |
10
|
adantl |
|
12 |
|
frgrusgr |
|
13 |
1 2
|
nbusgr |
|
14 |
1 2
|
nbusgr |
|
15 |
13 14
|
ineq12d |
|
16 |
12 15
|
syl |
|
17 |
16
|
adantr |
|
18 |
17
|
adantr |
|
19 |
|
inrab |
|
20 |
18 19
|
eqtrdi |
|
21 |
|
prcom |
|
22 |
21
|
eleq1i |
|
23 |
22
|
anbi2i |
|
24 |
|
prex |
|
25 |
|
prex |
|
26 |
24 25
|
prss |
|
27 |
23 26
|
bitri |
|
28 |
27
|
a1i |
|
29 |
28
|
rabbidva |
|
30 |
29
|
adantr |
|
31 |
|
simpr |
|
32 |
20 30 31
|
3eqtrd |
|
33 |
11 32
|
jca |
|
34 |
33
|
ex |
|
35 |
34
|
eximdv |
|
36 |
|
reusn |
|
37 |
|
df-rex |
|
38 |
35 36 37
|
3imtr4g |
|
39 |
4 38
|
mpd |
|
40 |
39
|
ex |
|