Metamath Proof Explorer


Theorem frcond4

Description: The friendship condition, alternatively expressed by neighborhoods: in a friendship graph, the neighborhoods of two different vertices have exactly one vertex in common. (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 29-Mar-2021) (Proof shortened by AV, 30-Dec-2021)

Ref Expression
Hypotheses frcond1.v V = Vtx G
frcond1.e E = Edg G
Assertion frcond4 G FriendGraph k V l V k x V G NeighbVtx k G NeighbVtx l = x

Proof

Step Hyp Ref Expression
1 frcond1.v V = Vtx G
2 frcond1.e E = Edg G
3 1 2 frcond3 G FriendGraph k V l V k l x V G NeighbVtx k G NeighbVtx l = x
4 eldifsn l V k l V l k
5 necom l k k l
6 5 biimpi l k k l
7 6 anim2i l V l k l V k l
8 4 7 sylbi l V k l V k l
9 8 anim2i k V l V k k V l V k l
10 3anass k V l V k l k V l V k l
11 9 10 sylibr k V l V k k V l V k l
12 3 11 impel G FriendGraph k V l V k x V G NeighbVtx k G NeighbVtx l = x
13 12 ralrimivva G FriendGraph k V l V k x V G NeighbVtx k G NeighbVtx l = x