Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
frel
Next ⟩
freld
Metamath Proof Explorer
Ascii
Unicode
Theorem
frel
Description:
A mapping is a relation.
(Contributed by
NM
, 3-Aug-1994)
Ref
Expression
Assertion
frel
⊢
F
:
A
⟶
B
→
Rel
⁡
F
Proof
Step
Hyp
Ref
Expression
1
ffn
⊢
F
:
A
⟶
B
→
F
Fn
A
2
fnrel
⊢
F
Fn
A
→
Rel
⁡
F
3
1
2
syl
⊢
F
:
A
⟶
B
→
Rel
⁡
F