Metamath Proof Explorer


Theorem freld

Description: A mapping is a relation. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis freld.1 φ F : A B
Assertion freld φ Rel F

Proof

Step Hyp Ref Expression
1 freld.1 φ F : A B
2 frel F : A B Rel F
3 1 2 syl φ Rel F