Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Founded and well-ordering relations
freq1
Next ⟩
freq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
freq1
Description:
Equality theorem for the well-founded predicate.
(Contributed by
NM
, 9-Mar-1997)
Ref
Expression
Assertion
freq1
⊢
R
=
S
→
R
Fr
A
↔
S
Fr
A
Proof
Step
Hyp
Ref
Expression
1
breq
⊢
R
=
S
→
z
R
y
↔
z
S
y
2
1
notbid
⊢
R
=
S
→
¬
z
R
y
↔
¬
z
S
y
3
2
rexralbidv
⊢
R
=
S
→
∃
y
∈
x
∀
z
∈
x
¬
z
R
y
↔
∃
y
∈
x
∀
z
∈
x
¬
z
S
y
4
3
imbi2d
⊢
R
=
S
→
x
⊆
A
∧
x
≠
∅
→
∃
y
∈
x
∀
z
∈
x
¬
z
R
y
↔
x
⊆
A
∧
x
≠
∅
→
∃
y
∈
x
∀
z
∈
x
¬
z
S
y
5
4
albidv
⊢
R
=
S
→
∀
x
x
⊆
A
∧
x
≠
∅
→
∃
y
∈
x
∀
z
∈
x
¬
z
R
y
↔
∀
x
x
⊆
A
∧
x
≠
∅
→
∃
y
∈
x
∀
z
∈
x
¬
z
S
y
6
df-fr
⊢
R
Fr
A
↔
∀
x
x
⊆
A
∧
x
≠
∅
→
∃
y
∈
x
∀
z
∈
x
¬
z
R
y
7
df-fr
⊢
S
Fr
A
↔
∀
x
x
⊆
A
∧
x
≠
∅
→
∃
y
∈
x
∀
z
∈
x
¬
z
S
y
8
5
6
7
3bitr4g
⊢
R
=
S
→
R
Fr
A
↔
S
Fr
A