Metamath Proof Explorer


Theorem freq1

Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997)

Ref Expression
Assertion freq1 R = S R Fr A S Fr A

Proof

Step Hyp Ref Expression
1 breq R = S z R y z S y
2 1 notbid R = S ¬ z R y ¬ z S y
3 2 rexralbidv R = S y x z x ¬ z R y y x z x ¬ z S y
4 3 imbi2d R = S x A x y x z x ¬ z R y x A x y x z x ¬ z S y
5 4 albidv R = S x x A x y x z x ¬ z R y x x A x y x z x ¬ z S y
6 df-fr R Fr A x x A x y x z x ¬ z R y
7 df-fr S Fr A x x A x y x z x ¬ z S y
8 5 6 7 3bitr4g R = S R Fr A S Fr A