Metamath Proof Explorer


Theorem freq12d

Description: Equality deduction for founded relations. (Contributed by Stefan O'Rear, 19-Jan-2015)

Ref Expression
Hypotheses weeq12d.l φ R = S
weeq12d.r φ A = B
Assertion freq12d φ R Fr A S Fr B

Proof

Step Hyp Ref Expression
1 weeq12d.l φ R = S
2 weeq12d.r φ A = B
3 freq1 R = S R Fr A S Fr A
4 1 3 syl φ R Fr A S Fr A
5 freq2 A = B S Fr A S Fr B
6 2 5 syl φ S Fr A S Fr B
7 4 6 bitrd φ R Fr A S Fr B