| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|
| 2 |
|
inss1 |
|
| 3 |
|
fssres |
|
| 4 |
1 2 3
|
sylancl |
|
| 5 |
|
difss |
|
| 6 |
|
fssres |
|
| 7 |
1 5 6
|
sylancl |
|
| 8 |
|
simp2 |
|
| 9 |
|
difss |
|
| 10 |
|
fssres |
|
| 11 |
8 9 10
|
sylancl |
|
| 12 |
|
indifdir |
|
| 13 |
|
disjdif |
|
| 14 |
13
|
difeq1i |
|
| 15 |
|
0dif |
|
| 16 |
12 14 15
|
3eqtri |
|
| 17 |
16
|
a1i |
|
| 18 |
7 11 17
|
fun2d |
|
| 19 |
|
indi |
|
| 20 |
|
inass |
|
| 21 |
|
disjdif |
|
| 22 |
21
|
ineq2i |
|
| 23 |
|
in0 |
|
| 24 |
20 22 23
|
3eqtri |
|
| 25 |
|
incom |
|
| 26 |
25
|
ineq1i |
|
| 27 |
|
inass |
|
| 28 |
13
|
ineq2i |
|
| 29 |
|
in0 |
|
| 30 |
27 28 29
|
3eqtri |
|
| 31 |
26 30
|
eqtri |
|
| 32 |
24 31
|
uneq12i |
|
| 33 |
|
un0 |
|
| 34 |
19 32 33
|
3eqtri |
|
| 35 |
34
|
a1i |
|
| 36 |
4 18 35
|
fun2d |
|
| 37 |
|
un12 |
|
| 38 |
25
|
uneq1i |
|
| 39 |
|
inundif |
|
| 40 |
38 39
|
eqtri |
|
| 41 |
40
|
uneq2i |
|
| 42 |
|
undif1 |
|
| 43 |
37 41 42
|
3eqtri |
|
| 44 |
43
|
feq2i |
|
| 45 |
|
ffn |
|
| 46 |
|
ffn |
|
| 47 |
|
id |
|
| 48 |
|
resasplit |
|
| 49 |
45 46 47 48
|
syl3an |
|
| 50 |
49
|
feq1d |
|
| 51 |
44 50
|
bitr4id |
|
| 52 |
36 51
|
mpbid |
|