| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffn |
|
| 2 |
|
ffn |
|
| 3 |
|
id |
|
| 4 |
|
resasplit |
|
| 5 |
1 2 3 4
|
syl3an |
|
| 6 |
5
|
reseq1d |
|
| 7 |
|
resundir |
|
| 8 |
|
inss2 |
|
| 9 |
|
resabs2 |
|
| 10 |
8 9
|
ax-mp |
|
| 11 |
|
resundir |
|
| 12 |
10 11
|
uneq12i |
|
| 13 |
|
dmres |
|
| 14 |
|
dmres |
|
| 15 |
14
|
ineq2i |
|
| 16 |
|
disjdif |
|
| 17 |
16
|
ineq1i |
|
| 18 |
|
inass |
|
| 19 |
|
0in |
|
| 20 |
17 18 19
|
3eqtr3i |
|
| 21 |
15 20
|
eqtri |
|
| 22 |
13 21
|
eqtri |
|
| 23 |
|
relres |
|
| 24 |
|
reldm0 |
|
| 25 |
23 24
|
ax-mp |
|
| 26 |
22 25
|
mpbir |
|
| 27 |
|
difss |
|
| 28 |
|
resabs2 |
|
| 29 |
27 28
|
ax-mp |
|
| 30 |
26 29
|
uneq12i |
|
| 31 |
30
|
uneq2i |
|
| 32 |
|
simp3 |
|
| 33 |
32
|
uneq1d |
|
| 34 |
|
uncom |
|
| 35 |
|
un0 |
|
| 36 |
34 35
|
eqtri |
|
| 37 |
36
|
uneq2i |
|
| 38 |
|
resundi |
|
| 39 |
|
incom |
|
| 40 |
39
|
uneq1i |
|
| 41 |
|
inundif |
|
| 42 |
40 41
|
eqtri |
|
| 43 |
42
|
reseq2i |
|
| 44 |
|
fnresdm |
|
| 45 |
2 44
|
syl |
|
| 46 |
45
|
adantl |
|
| 47 |
43 46
|
eqtrid |
|
| 48 |
38 47
|
eqtr3id |
|
| 49 |
37 48
|
eqtrid |
|
| 50 |
49
|
3adant3 |
|
| 51 |
33 50
|
eqtrd |
|
| 52 |
31 51
|
eqtrid |
|
| 53 |
12 52
|
eqtrid |
|
| 54 |
7 53
|
eqtrid |
|
| 55 |
6 54
|
eqtrd |
|