Step |
Hyp |
Ref |
Expression |
1 |
|
ffn |
|
2 |
|
ffn |
|
3 |
|
id |
|
4 |
|
resasplit |
|
5 |
1 2 3 4
|
syl3an |
|
6 |
5
|
reseq1d |
|
7 |
|
resundir |
|
8 |
|
inss2 |
|
9 |
|
resabs2 |
|
10 |
8 9
|
ax-mp |
|
11 |
|
resundir |
|
12 |
10 11
|
uneq12i |
|
13 |
|
dmres |
|
14 |
|
dmres |
|
15 |
14
|
ineq2i |
|
16 |
|
disjdif |
|
17 |
16
|
ineq1i |
|
18 |
|
inass |
|
19 |
|
0in |
|
20 |
17 18 19
|
3eqtr3i |
|
21 |
15 20
|
eqtri |
|
22 |
13 21
|
eqtri |
|
23 |
|
relres |
|
24 |
|
reldm0 |
|
25 |
23 24
|
ax-mp |
|
26 |
22 25
|
mpbir |
|
27 |
|
difss |
|
28 |
|
resabs2 |
|
29 |
27 28
|
ax-mp |
|
30 |
26 29
|
uneq12i |
|
31 |
30
|
uneq2i |
|
32 |
|
simp3 |
|
33 |
32
|
uneq1d |
|
34 |
|
uncom |
|
35 |
|
un0 |
|
36 |
34 35
|
eqtri |
|
37 |
36
|
uneq2i |
|
38 |
|
resundi |
|
39 |
|
incom |
|
40 |
39
|
uneq1i |
|
41 |
|
inundif |
|
42 |
40 41
|
eqtri |
|
43 |
42
|
reseq2i |
|
44 |
|
fnresdm |
|
45 |
2 44
|
syl |
|
46 |
45
|
adantl |
|
47 |
43 46
|
eqtrid |
|
48 |
38 47
|
eqtr3id |
|
49 |
37 48
|
eqtrid |
|
50 |
49
|
3adant3 |
|
51 |
33 50
|
eqtrd |
|
52 |
31 51
|
eqtrid |
|
53 |
12 52
|
eqtrid |
|
54 |
7 53
|
eqtrid |
|
55 |
6 54
|
eqtrd |
|