Metamath Proof Explorer


Theorem fresf1o

Description: Conditions for a restriction to be a one-to-one onto function. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Assertion fresf1o Fun F C ran F Fun F -1 C F F -1 C : F -1 C 1-1 onto C

Proof

Step Hyp Ref Expression
1 funfn Fun F -1 C F -1 C Fn dom F -1 C
2 1 biimpi Fun F -1 C F -1 C Fn dom F -1 C
3 2 3ad2ant3 Fun F C ran F Fun F -1 C F -1 C Fn dom F -1 C
4 simp2 Fun F C ran F Fun F -1 C C ran F
5 df-rn ran F = dom F -1
6 4 5 sseqtrdi Fun F C ran F Fun F -1 C C dom F -1
7 ssdmres C dom F -1 dom F -1 C = C
8 6 7 sylib Fun F C ran F Fun F -1 C dom F -1 C = C
9 8 fneq2d Fun F C ran F Fun F -1 C F -1 C Fn dom F -1 C F -1 C Fn C
10 3 9 mpbid Fun F C ran F Fun F -1 C F -1 C Fn C
11 simp1 Fun F C ran F Fun F -1 C Fun F
12 11 funresd Fun F C ran F Fun F -1 C Fun F F -1 C
13 funcnvres2 Fun F F -1 C -1 = F F -1 C
14 11 13 syl Fun F C ran F Fun F -1 C F -1 C -1 = F F -1 C
15 14 funeqd Fun F C ran F Fun F -1 C Fun F -1 C -1 Fun F F -1 C
16 12 15 mpbird Fun F C ran F Fun F -1 C Fun F -1 C -1
17 df-ima F -1 C = ran F -1 C
18 17 eqcomi ran F -1 C = F -1 C
19 18 a1i Fun F C ran F Fun F -1 C ran F -1 C = F -1 C
20 dff1o2 F -1 C : C 1-1 onto F -1 C F -1 C Fn C Fun F -1 C -1 ran F -1 C = F -1 C
21 10 16 19 20 syl3anbrc Fun F C ran F Fun F -1 C F -1 C : C 1-1 onto F -1 C
22 f1ocnv F -1 C : C 1-1 onto F -1 C F -1 C -1 : F -1 C 1-1 onto C
23 21 22 syl Fun F C ran F Fun F -1 C F -1 C -1 : F -1 C 1-1 onto C
24 f1oeq1 F -1 C -1 = F F -1 C F -1 C -1 : F -1 C 1-1 onto C F F -1 C : F -1 C 1-1 onto C
25 11 13 24 3syl Fun F C ran F Fun F -1 C F -1 C -1 : F -1 C 1-1 onto C F F -1 C : F -1 C 1-1 onto C
26 23 25 mpbid Fun F C ran F Fun F -1 C F F -1 C : F -1 C 1-1 onto C