Step |
Hyp |
Ref |
Expression |
1 |
|
freshmansdream.s |
|
2 |
|
freshmansdream.a |
|
3 |
|
freshmansdream.p |
|
4 |
|
freshmansdream.c |
|
5 |
|
freshmansdream.r |
|
6 |
|
freshmansdream.1 |
|
7 |
|
freshmansdream.x |
|
8 |
|
freshmansdream.y |
|
9 |
|
crngring |
|
10 |
4
|
chrcl |
|
11 |
5 9 10
|
3syl |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
1 12 13 2 14 3
|
crngbinom |
|
16 |
5 11 7 8 15
|
syl22anc |
|
17 |
11
|
nn0cnd |
|
18 |
|
1cnd |
|
19 |
17 18
|
npcand |
|
20 |
19
|
oveq2d |
|
21 |
20
|
eqcomd |
|
22 |
21
|
mpteq1d |
|
23 |
22
|
oveq2d |
|
24 |
|
ringcmn |
|
25 |
5 9 24
|
3syl |
|
26 |
|
prmnn |
|
27 |
|
nnm1nn0 |
|
28 |
6 26 27
|
3syl |
|
29 |
|
ringgrp |
|
30 |
5 9 29
|
3syl |
|
31 |
30
|
adantr |
|
32 |
11
|
adantr |
|
33 |
|
fzssz |
|
34 |
33
|
a1i |
|
35 |
34
|
sselda |
|
36 |
|
bccl |
|
37 |
32 35 36
|
syl2anc |
|
38 |
37
|
nn0zd |
|
39 |
5 9
|
syl |
|
40 |
39
|
adantr |
|
41 |
14 1
|
mgpbas |
|
42 |
14
|
ringmgp |
|
43 |
39 42
|
syl |
|
44 |
43
|
adantr |
|
45 |
|
simpr |
|
46 |
20
|
adantr |
|
47 |
45 46
|
eleqtrd |
|
48 |
|
fznn0sub |
|
49 |
47 48
|
syl |
|
50 |
7
|
adantr |
|
51 |
41 3 44 49 50
|
mulgnn0cld |
|
52 |
|
elfznn0 |
|
53 |
52
|
adantl |
|
54 |
8
|
adantr |
|
55 |
41 3 44 53 54
|
mulgnn0cld |
|
56 |
1 12
|
ringcl |
|
57 |
40 51 55 56
|
syl3anc |
|
58 |
1 13
|
mulgcl |
|
59 |
31 38 57 58
|
syl3anc |
|
60 |
1 2 25 28 59
|
gsummptfzsplit |
|
61 |
30
|
adantr |
|
62 |
|
elfzelz |
|
63 |
11 62 36
|
syl2an |
|
64 |
63
|
nn0zd |
|
65 |
39
|
adantr |
|
66 |
65 42
|
syl |
|
67 |
|
fzssp1 |
|
68 |
67 20
|
sseqtrid |
|
69 |
68
|
sselda |
|
70 |
69 48
|
syl |
|
71 |
7
|
adantr |
|
72 |
41 3 66 70 71
|
mulgnn0cld |
|
73 |
|
elfznn0 |
|
74 |
73
|
adantl |
|
75 |
8
|
adantr |
|
76 |
41 3 66 74 75
|
mulgnn0cld |
|
77 |
65 72 76 56
|
syl3anc |
|
78 |
61 64 77 58
|
syl3anc |
|
79 |
1 2 25 28 78
|
gsummptfzsplitl |
|
80 |
39
|
adantr |
|
81 |
|
prmdvdsbc |
|
82 |
6 81
|
sylan |
|
83 |
80 42
|
syl |
|
84 |
11
|
nn0zd |
|
85 |
|
1nn0 |
|
86 |
|
eluzmn |
|
87 |
84 85 86
|
sylancl |
|
88 |
|
fzss2 |
|
89 |
87 88
|
syl |
|
90 |
89
|
sselda |
|
91 |
|
fznn0sub |
|
92 |
90 91
|
syl |
|
93 |
7
|
adantr |
|
94 |
41 3 83 92 93
|
mulgnn0cld |
|
95 |
|
elfznn |
|
96 |
95
|
nnnn0d |
|
97 |
96
|
adantl |
|
98 |
8
|
adantr |
|
99 |
41 3 83 97 98
|
mulgnn0cld |
|
100 |
80 94 99 56
|
syl3anc |
|
101 |
|
eqid |
|
102 |
4 1 13 101
|
dvdschrmulg |
|
103 |
80 82 100 102
|
syl3anc |
|
104 |
103
|
mpteq2dva |
|
105 |
104
|
oveq2d |
|
106 |
|
ringmnd |
|
107 |
39 106
|
syl |
|
108 |
|
ovex |
|
109 |
101
|
gsumz |
|
110 |
107 108 109
|
sylancl |
|
111 |
105 110
|
eqtrd |
|
112 |
|
0nn0 |
|
113 |
112
|
a1i |
|
114 |
41 3 43 11 7
|
mulgnn0cld |
|
115 |
|
simpr |
|
116 |
115
|
oveq2d |
|
117 |
115
|
oveq2d |
|
118 |
117
|
oveq1d |
|
119 |
115
|
oveq1d |
|
120 |
118 119
|
oveq12d |
|
121 |
116 120
|
oveq12d |
|
122 |
|
bcn0 |
|
123 |
11 122
|
syl |
|
124 |
17
|
subid1d |
|
125 |
124
|
oveq1d |
|
126 |
|
eqid |
|
127 |
14 126
|
ringidval |
|
128 |
41 127 3
|
mulg0 |
|
129 |
8 128
|
syl |
|
130 |
125 129
|
oveq12d |
|
131 |
1 12 126
|
ringridm |
|
132 |
39 114 131
|
syl2anc |
|
133 |
130 132
|
eqtrd |
|
134 |
123 133
|
oveq12d |
|
135 |
1 13
|
mulg1 |
|
136 |
114 135
|
syl |
|
137 |
134 136
|
eqtrd |
|
138 |
137
|
adantr |
|
139 |
121 138
|
eqtrd |
|
140 |
1 107 113 114 139
|
gsumsnd |
|
141 |
111 140
|
oveq12d |
|
142 |
1 2 101
|
grplid |
|
143 |
30 114 142
|
syl2anc |
|
144 |
79 141 143
|
3eqtrd |
|
145 |
19 11
|
eqeltrd |
|
146 |
41 3 43 11 8
|
mulgnn0cld |
|
147 |
|
simpr |
|
148 |
19
|
adantr |
|
149 |
147 148
|
eqtrd |
|
150 |
149
|
oveq2d |
|
151 |
149
|
oveq2d |
|
152 |
151
|
oveq1d |
|
153 |
149
|
oveq1d |
|
154 |
152 153
|
oveq12d |
|
155 |
150 154
|
oveq12d |
|
156 |
|
bcnn |
|
157 |
11 156
|
syl |
|
158 |
17
|
subidd |
|
159 |
158
|
oveq1d |
|
160 |
41 127 3
|
mulg0 |
|
161 |
7 160
|
syl |
|
162 |
159 161
|
eqtrd |
|
163 |
162
|
oveq1d |
|
164 |
1 12 126
|
ringlidm |
|
165 |
39 146 164
|
syl2anc |
|
166 |
163 165
|
eqtrd |
|
167 |
157 166
|
oveq12d |
|
168 |
1 13
|
mulg1 |
|
169 |
146 168
|
syl |
|
170 |
167 169
|
eqtrd |
|
171 |
170
|
adantr |
|
172 |
155 171
|
eqtrd |
|
173 |
1 107 145 146 172
|
gsumsnd |
|
174 |
144 173
|
oveq12d |
|
175 |
60 174
|
eqtrd |
|
176 |
16 23 175
|
3eqtrd |
|