Metamath Proof Explorer


Theorem freshmansdream

Description: For a prime number P , if X and Y are members of a commutative ring R of characteristic P , then ( ( X + Y ) ^ P ) = ( ( X ^ P ) + ( Y ^ P ) ) . This theorem is sometimes referred to as "the freshman's dream" . (Contributed by Thierry Arnoux, 18-Sep-2023)

Ref Expression
Hypotheses freshmansdream.s B = Base R
freshmansdream.a + ˙ = + R
freshmansdream.p × ˙ = mulGrp R
freshmansdream.c P = chr R
freshmansdream.r φ R CRing
freshmansdream.1 φ P
freshmansdream.x φ X B
freshmansdream.y φ Y B
Assertion freshmansdream φ P × ˙ X + ˙ Y = P × ˙ X + ˙ P × ˙ Y

Proof

Step Hyp Ref Expression
1 freshmansdream.s B = Base R
2 freshmansdream.a + ˙ = + R
3 freshmansdream.p × ˙ = mulGrp R
4 freshmansdream.c P = chr R
5 freshmansdream.r φ R CRing
6 freshmansdream.1 φ P
7 freshmansdream.x φ X B
8 freshmansdream.y φ Y B
9 crngring R CRing R Ring
10 4 chrcl R Ring P 0
11 5 9 10 3syl φ P 0
12 eqid R = R
13 eqid R = R
14 eqid mulGrp R = mulGrp R
15 1 12 13 2 14 3 crngbinom R CRing P 0 X B Y B P × ˙ X + ˙ Y = R i = 0 P ( P i) R P i × ˙ X R i × ˙ Y
16 5 11 7 8 15 syl22anc φ P × ˙ X + ˙ Y = R i = 0 P ( P i) R P i × ˙ X R i × ˙ Y
17 11 nn0cnd φ P
18 1cnd φ 1
19 17 18 npcand φ P - 1 + 1 = P
20 19 oveq2d φ 0 P - 1 + 1 = 0 P
21 20 eqcomd φ 0 P = 0 P - 1 + 1
22 21 mpteq1d φ i 0 P ( P i) R P i × ˙ X R i × ˙ Y = i 0 P - 1 + 1 ( P i) R P i × ˙ X R i × ˙ Y
23 22 oveq2d φ R i = 0 P ( P i) R P i × ˙ X R i × ˙ Y = R i = 0 P - 1 + 1 ( P i) R P i × ˙ X R i × ˙ Y
24 ringcmn R Ring R CMnd
25 5 9 24 3syl φ R CMnd
26 prmnn P P
27 nnm1nn0 P P 1 0
28 6 26 27 3syl φ P 1 0
29 ringgrp R Ring R Grp
30 5 9 29 3syl φ R Grp
31 30 adantr φ i 0 P - 1 + 1 R Grp
32 11 adantr φ i 0 P - 1 + 1 P 0
33 fzssz 0 P - 1 + 1
34 33 a1i φ 0 P - 1 + 1
35 34 sselda φ i 0 P - 1 + 1 i
36 bccl P 0 i ( P i) 0
37 32 35 36 syl2anc φ i 0 P - 1 + 1 ( P i) 0
38 37 nn0zd φ i 0 P - 1 + 1 ( P i)
39 5 9 syl φ R Ring
40 39 adantr φ i 0 P - 1 + 1 R Ring
41 14 1 mgpbas B = Base mulGrp R
42 14 ringmgp R Ring mulGrp R Mnd
43 39 42 syl φ mulGrp R Mnd
44 43 adantr φ i 0 P - 1 + 1 mulGrp R Mnd
45 simpr φ i 0 P - 1 + 1 i 0 P - 1 + 1
46 20 adantr φ i 0 P - 1 + 1 0 P - 1 + 1 = 0 P
47 45 46 eleqtrd φ i 0 P - 1 + 1 i 0 P
48 fznn0sub i 0 P P i 0
49 47 48 syl φ i 0 P - 1 + 1 P i 0
50 7 adantr φ i 0 P - 1 + 1 X B
51 41 3 44 49 50 mulgnn0cld φ i 0 P - 1 + 1 P i × ˙ X B
52 elfznn0 i 0 P - 1 + 1 i 0
53 52 adantl φ i 0 P - 1 + 1 i 0
54 8 adantr φ i 0 P - 1 + 1 Y B
55 41 3 44 53 54 mulgnn0cld φ i 0 P - 1 + 1 i × ˙ Y B
56 1 12 ringcl R Ring P i × ˙ X B i × ˙ Y B P i × ˙ X R i × ˙ Y B
57 40 51 55 56 syl3anc φ i 0 P - 1 + 1 P i × ˙ X R i × ˙ Y B
58 1 13 mulgcl R Grp ( P i) P i × ˙ X R i × ˙ Y B ( P i) R P i × ˙ X R i × ˙ Y B
59 31 38 57 58 syl3anc φ i 0 P - 1 + 1 ( P i) R P i × ˙ X R i × ˙ Y B
60 1 2 25 28 59 gsummptfzsplit φ R i = 0 P - 1 + 1 ( P i) R P i × ˙ X R i × ˙ Y = R i = 0 P 1 ( P i) R P i × ˙ X R i × ˙ Y + ˙ R i P - 1 + 1 ( P i) R P i × ˙ X R i × ˙ Y
61 30 adantr φ i 0 P 1 R Grp
62 elfzelz i 0 P 1 i
63 11 62 36 syl2an φ i 0 P 1 ( P i) 0
64 63 nn0zd φ i 0 P 1 ( P i)
65 39 adantr φ i 0 P 1 R Ring
66 65 42 syl φ i 0 P 1 mulGrp R Mnd
67 fzssp1 0 P 1 0 P - 1 + 1
68 67 20 sseqtrid φ 0 P 1 0 P
69 68 sselda φ i 0 P 1 i 0 P
70 69 48 syl φ i 0 P 1 P i 0
71 7 adantr φ i 0 P 1 X B
72 41 3 66 70 71 mulgnn0cld φ i 0 P 1 P i × ˙ X B
73 elfznn0 i 0 P 1 i 0
74 73 adantl φ i 0 P 1 i 0
75 8 adantr φ i 0 P 1 Y B
76 41 3 66 74 75 mulgnn0cld φ i 0 P 1 i × ˙ Y B
77 65 72 76 56 syl3anc φ i 0 P 1 P i × ˙ X R i × ˙ Y B
78 61 64 77 58 syl3anc φ i 0 P 1 ( P i) R P i × ˙ X R i × ˙ Y B
79 1 2 25 28 78 gsummptfzsplitl φ R i = 0 P 1 ( P i) R P i × ˙ X R i × ˙ Y = R i = 1 P 1 ( P i) R P i × ˙ X R i × ˙ Y + ˙ R i 0 ( P i) R P i × ˙ X R i × ˙ Y
80 39 adantr φ i 1 P 1 R Ring
81 prmdvdsbc P i 1 P 1 P ( P i)
82 6 81 sylan φ i 1 P 1 P ( P i)
83 80 42 syl φ i 1 P 1 mulGrp R Mnd
84 11 nn0zd φ P
85 1nn0 1 0
86 eluzmn P 1 0 P P 1
87 84 85 86 sylancl φ P P 1
88 fzss2 P P 1 1 P 1 1 P
89 87 88 syl φ 1 P 1 1 P
90 89 sselda φ i 1 P 1 i 1 P
91 fznn0sub i 1 P P i 0
92 90 91 syl φ i 1 P 1 P i 0
93 7 adantr φ i 1 P 1 X B
94 41 3 83 92 93 mulgnn0cld φ i 1 P 1 P i × ˙ X B
95 elfznn i 1 P 1 i
96 95 nnnn0d i 1 P 1 i 0
97 96 adantl φ i 1 P 1 i 0
98 8 adantr φ i 1 P 1 Y B
99 41 3 83 97 98 mulgnn0cld φ i 1 P 1 i × ˙ Y B
100 80 94 99 56 syl3anc φ i 1 P 1 P i × ˙ X R i × ˙ Y B
101 eqid 0 R = 0 R
102 4 1 13 101 dvdschrmulg R Ring P ( P i) P i × ˙ X R i × ˙ Y B ( P i) R P i × ˙ X R i × ˙ Y = 0 R
103 80 82 100 102 syl3anc φ i 1 P 1 ( P i) R P i × ˙ X R i × ˙ Y = 0 R
104 103 mpteq2dva φ i 1 P 1 ( P i) R P i × ˙ X R i × ˙ Y = i 1 P 1 0 R
105 104 oveq2d φ R i = 1 P 1 ( P i) R P i × ˙ X R i × ˙ Y = R i = 1 P 1 0 R
106 ringmnd R Ring R Mnd
107 39 106 syl φ R Mnd
108 ovex 1 P 1 V
109 101 gsumz R Mnd 1 P 1 V R i = 1 P 1 0 R = 0 R
110 107 108 109 sylancl φ R i = 1 P 1 0 R = 0 R
111 105 110 eqtrd φ R i = 1 P 1 ( P i) R P i × ˙ X R i × ˙ Y = 0 R
112 0nn0 0 0
113 112 a1i φ 0 0
114 41 3 43 11 7 mulgnn0cld φ P × ˙ X B
115 simpr φ i = 0 i = 0
116 115 oveq2d φ i = 0 ( P i) = ( P 0 )
117 115 oveq2d φ i = 0 P i = P 0
118 117 oveq1d φ i = 0 P i × ˙ X = P 0 × ˙ X
119 115 oveq1d φ i = 0 i × ˙ Y = 0 × ˙ Y
120 118 119 oveq12d φ i = 0 P i × ˙ X R i × ˙ Y = P 0 × ˙ X R 0 × ˙ Y
121 116 120 oveq12d φ i = 0 ( P i) R P i × ˙ X R i × ˙ Y = ( P 0 ) R P 0 × ˙ X R 0 × ˙ Y
122 bcn0 P 0 ( P 0 ) = 1
123 11 122 syl φ ( P 0 ) = 1
124 17 subid1d φ P 0 = P
125 124 oveq1d φ P 0 × ˙ X = P × ˙ X
126 eqid 1 R = 1 R
127 14 126 ringidval 1 R = 0 mulGrp R
128 41 127 3 mulg0 Y B 0 × ˙ Y = 1 R
129 8 128 syl φ 0 × ˙ Y = 1 R
130 125 129 oveq12d φ P 0 × ˙ X R 0 × ˙ Y = P × ˙ X R 1 R
131 1 12 126 ringridm R Ring P × ˙ X B P × ˙ X R 1 R = P × ˙ X
132 39 114 131 syl2anc φ P × ˙ X R 1 R = P × ˙ X
133 130 132 eqtrd φ P 0 × ˙ X R 0 × ˙ Y = P × ˙ X
134 123 133 oveq12d φ ( P 0 ) R P 0 × ˙ X R 0 × ˙ Y = 1 R P × ˙ X
135 1 13 mulg1 P × ˙ X B 1 R P × ˙ X = P × ˙ X
136 114 135 syl φ 1 R P × ˙ X = P × ˙ X
137 134 136 eqtrd φ ( P 0 ) R P 0 × ˙ X R 0 × ˙ Y = P × ˙ X
138 137 adantr φ i = 0 ( P 0 ) R P 0 × ˙ X R 0 × ˙ Y = P × ˙ X
139 121 138 eqtrd φ i = 0 ( P i) R P i × ˙ X R i × ˙ Y = P × ˙ X
140 1 107 113 114 139 gsumsnd φ R i 0 ( P i) R P i × ˙ X R i × ˙ Y = P × ˙ X
141 111 140 oveq12d φ R i = 1 P 1 ( P i) R P i × ˙ X R i × ˙ Y + ˙ R i 0 ( P i) R P i × ˙ X R i × ˙ Y = 0 R + ˙ P × ˙ X
142 1 2 101 grplid R Grp P × ˙ X B 0 R + ˙ P × ˙ X = P × ˙ X
143 30 114 142 syl2anc φ 0 R + ˙ P × ˙ X = P × ˙ X
144 79 141 143 3eqtrd φ R i = 0 P 1 ( P i) R P i × ˙ X R i × ˙ Y = P × ˙ X
145 19 11 eqeltrd φ P - 1 + 1 0
146 41 3 43 11 8 mulgnn0cld φ P × ˙ Y B
147 simpr φ i = P - 1 + 1 i = P - 1 + 1
148 19 adantr φ i = P - 1 + 1 P - 1 + 1 = P
149 147 148 eqtrd φ i = P - 1 + 1 i = P
150 149 oveq2d φ i = P - 1 + 1 ( P i) = ( P P)
151 149 oveq2d φ i = P - 1 + 1 P i = P P
152 151 oveq1d φ i = P - 1 + 1 P i × ˙ X = P P × ˙ X
153 149 oveq1d φ i = P - 1 + 1 i × ˙ Y = P × ˙ Y
154 152 153 oveq12d φ i = P - 1 + 1 P i × ˙ X R i × ˙ Y = P P × ˙ X R P × ˙ Y
155 150 154 oveq12d φ i = P - 1 + 1 ( P i) R P i × ˙ X R i × ˙ Y = ( P P) R P P × ˙ X R P × ˙ Y
156 bcnn P 0 ( P P) = 1
157 11 156 syl φ ( P P) = 1
158 17 subidd φ P P = 0
159 158 oveq1d φ P P × ˙ X = 0 × ˙ X
160 41 127 3 mulg0 X B 0 × ˙ X = 1 R
161 7 160 syl φ 0 × ˙ X = 1 R
162 159 161 eqtrd φ P P × ˙ X = 1 R
163 162 oveq1d φ P P × ˙ X R P × ˙ Y = 1 R R P × ˙ Y
164 1 12 126 ringlidm R Ring P × ˙ Y B 1 R R P × ˙ Y = P × ˙ Y
165 39 146 164 syl2anc φ 1 R R P × ˙ Y = P × ˙ Y
166 163 165 eqtrd φ P P × ˙ X R P × ˙ Y = P × ˙ Y
167 157 166 oveq12d φ ( P P) R P P × ˙ X R P × ˙ Y = 1 R P × ˙ Y
168 1 13 mulg1 P × ˙ Y B 1 R P × ˙ Y = P × ˙ Y
169 146 168 syl φ 1 R P × ˙ Y = P × ˙ Y
170 167 169 eqtrd φ ( P P) R P P × ˙ X R P × ˙ Y = P × ˙ Y
171 170 adantr φ i = P - 1 + 1 ( P P) R P P × ˙ X R P × ˙ Y = P × ˙ Y
172 155 171 eqtrd φ i = P - 1 + 1 ( P i) R P i × ˙ X R i × ˙ Y = P × ˙ Y
173 1 107 145 146 172 gsumsnd φ R i P - 1 + 1 ( P i) R P i × ˙ X R i × ˙ Y = P × ˙ Y
174 144 173 oveq12d φ R i = 0 P 1 ( P i) R P i × ˙ X R i × ˙ Y + ˙ R i P - 1 + 1 ( P i) R P i × ˙ X R i × ˙ Y = P × ˙ X + ˙ P × ˙ Y
175 60 174 eqtrd φ R i = 0 P - 1 + 1 ( P i) R P i × ˙ X R i × ˙ Y = P × ˙ X + ˙ P × ˙ Y
176 16 23 175 3eqtrd φ P × ˙ X + ˙ Y = P × ˙ X + ˙ P × ˙ Y