Metamath Proof Explorer


Theorem fresin2

Description: Restriction of a function with respect to the intersection with its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion fresin2 F : A B F C A = F C

Proof

Step Hyp Ref Expression
1 fdm F : A B dom F = A
2 1 eqcomd F : A B A = dom F
3 2 ineq2d F : A B C A = C dom F
4 3 reseq2d F : A B F C A = F C dom F
5 frel F : A B Rel F
6 resindm Rel F F C dom F = F C
7 5 6 syl F : A B F C dom F = F C
8 4 7 eqtrd F : A B F C A = F C