Metamath Proof Explorer


Theorem frfnom

Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996) (Revised by Mario Carneiro, 14-Nov-2014)

Ref Expression
Assertion frfnom rec F A ω Fn ω

Proof

Step Hyp Ref Expression
1 rdgfun Fun rec F A
2 funres Fun rec F A Fun rec F A ω
3 1 2 ax-mp Fun rec F A ω
4 dmres dom rec F A ω = ω dom rec F A
5 rdgdmlim Lim dom rec F A
6 limomss Lim dom rec F A ω dom rec F A
7 5 6 ax-mp ω dom rec F A
8 df-ss ω dom rec F A ω dom rec F A = ω
9 7 8 mpbi ω dom rec F A = ω
10 4 9 eqtri dom rec F A ω = ω
11 df-fn rec F A ω Fn ω Fun rec F A ω dom rec F A ω = ω
12 3 10 11 mpbir2an rec F A ω Fn ω