Metamath Proof Explorer


Theorem frgp0

Description: The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses frgp0.m G = freeGrp I
frgp0.r ˙ = ~ FG I
Assertion frgp0 I V G Grp ˙ = 0 G

Proof

Step Hyp Ref Expression
1 frgp0.m G = freeGrp I
2 frgp0.r ˙ = ~ FG I
3 eqid freeMnd I × 2 𝑜 = freeMnd I × 2 𝑜
4 1 3 2 frgpval I V G = freeMnd I × 2 𝑜 / 𝑠 ˙
5 2on 2 𝑜 On
6 xpexg I V 2 𝑜 On I × 2 𝑜 V
7 5 6 mpan2 I V I × 2 𝑜 V
8 eqid Base freeMnd I × 2 𝑜 = Base freeMnd I × 2 𝑜
9 3 8 frmdbas I × 2 𝑜 V Base freeMnd I × 2 𝑜 = Word I × 2 𝑜
10 7 9 syl I V Base freeMnd I × 2 𝑜 = Word I × 2 𝑜
11 10 eqcomd I V Word I × 2 𝑜 = Base freeMnd I × 2 𝑜
12 eqidd I V + freeMnd I × 2 𝑜 = + freeMnd I × 2 𝑜
13 eqid I Word I × 2 𝑜 = I Word I × 2 𝑜
14 13 2 efger ˙ Er I Word I × 2 𝑜
15 wrdexg I × 2 𝑜 V Word I × 2 𝑜 V
16 fvi Word I × 2 𝑜 V I Word I × 2 𝑜 = Word I × 2 𝑜
17 7 15 16 3syl I V I Word I × 2 𝑜 = Word I × 2 𝑜
18 ereq2 I Word I × 2 𝑜 = Word I × 2 𝑜 ˙ Er I Word I × 2 𝑜 ˙ Er Word I × 2 𝑜
19 17 18 syl I V ˙ Er I Word I × 2 𝑜 ˙ Er Word I × 2 𝑜
20 14 19 mpbii I V ˙ Er Word I × 2 𝑜
21 fvexd I V freeMnd I × 2 𝑜 V
22 eqid + freeMnd I × 2 𝑜 = + freeMnd I × 2 𝑜
23 1 3 2 22 frgpcpbl a ˙ b c ˙ d a + freeMnd I × 2 𝑜 c ˙ b + freeMnd I × 2 𝑜 d
24 23 a1i I V a ˙ b c ˙ d a + freeMnd I × 2 𝑜 c ˙ b + freeMnd I × 2 𝑜 d
25 3 frmdmnd I × 2 𝑜 V freeMnd I × 2 𝑜 Mnd
26 7 25 syl I V freeMnd I × 2 𝑜 Mnd
27 26 3ad2ant1 I V x Word I × 2 𝑜 y Word I × 2 𝑜 freeMnd I × 2 𝑜 Mnd
28 simp2 I V x Word I × 2 𝑜 y Word I × 2 𝑜 x Word I × 2 𝑜
29 11 3ad2ant1 I V x Word I × 2 𝑜 y Word I × 2 𝑜 Word I × 2 𝑜 = Base freeMnd I × 2 𝑜
30 28 29 eleqtrd I V x Word I × 2 𝑜 y Word I × 2 𝑜 x Base freeMnd I × 2 𝑜
31 simp3 I V x Word I × 2 𝑜 y Word I × 2 𝑜 y Word I × 2 𝑜
32 31 29 eleqtrd I V x Word I × 2 𝑜 y Word I × 2 𝑜 y Base freeMnd I × 2 𝑜
33 8 22 mndcl freeMnd I × 2 𝑜 Mnd x Base freeMnd I × 2 𝑜 y Base freeMnd I × 2 𝑜 x + freeMnd I × 2 𝑜 y Base freeMnd I × 2 𝑜
34 27 30 32 33 syl3anc I V x Word I × 2 𝑜 y Word I × 2 𝑜 x + freeMnd I × 2 𝑜 y Base freeMnd I × 2 𝑜
35 34 29 eleqtrrd I V x Word I × 2 𝑜 y Word I × 2 𝑜 x + freeMnd I × 2 𝑜 y Word I × 2 𝑜
36 20 adantr I V x Word I × 2 𝑜 y Word I × 2 𝑜 z Word I × 2 𝑜 ˙ Er Word I × 2 𝑜
37 26 adantr I V x Word I × 2 𝑜 y Word I × 2 𝑜 z Word I × 2 𝑜 freeMnd I × 2 𝑜 Mnd
38 34 3adant3r3 I V x Word I × 2 𝑜 y Word I × 2 𝑜 z Word I × 2 𝑜 x + freeMnd I × 2 𝑜 y Base freeMnd I × 2 𝑜
39 simpr3 I V x Word I × 2 𝑜 y Word I × 2 𝑜 z Word I × 2 𝑜 z Word I × 2 𝑜
40 11 adantr I V x Word I × 2 𝑜 y Word I × 2 𝑜 z Word I × 2 𝑜 Word I × 2 𝑜 = Base freeMnd I × 2 𝑜
41 39 40 eleqtrd I V x Word I × 2 𝑜 y Word I × 2 𝑜 z Word I × 2 𝑜 z Base freeMnd I × 2 𝑜
42 8 22 mndcl freeMnd I × 2 𝑜 Mnd x + freeMnd I × 2 𝑜 y Base freeMnd I × 2 𝑜 z Base freeMnd I × 2 𝑜 x + freeMnd I × 2 𝑜 y + freeMnd I × 2 𝑜 z Base freeMnd I × 2 𝑜
43 37 38 41 42 syl3anc I V x Word I × 2 𝑜 y Word I × 2 𝑜 z Word I × 2 𝑜 x + freeMnd I × 2 𝑜 y + freeMnd I × 2 𝑜 z Base freeMnd I × 2 𝑜
44 43 40 eleqtrrd I V x Word I × 2 𝑜 y Word I × 2 𝑜 z Word I × 2 𝑜 x + freeMnd I × 2 𝑜 y + freeMnd I × 2 𝑜 z Word I × 2 𝑜
45 36 44 erref I V x Word I × 2 𝑜 y Word I × 2 𝑜 z Word I × 2 𝑜 x + freeMnd I × 2 𝑜 y + freeMnd I × 2 𝑜 z ˙ x + freeMnd I × 2 𝑜 y + freeMnd I × 2 𝑜 z
46 30 3adant3r3 I V x Word I × 2 𝑜 y Word I × 2 𝑜 z Word I × 2 𝑜 x Base freeMnd I × 2 𝑜
47 32 3adant3r3 I V x Word I × 2 𝑜 y Word I × 2 𝑜 z Word I × 2 𝑜 y Base freeMnd I × 2 𝑜
48 8 22 mndass freeMnd I × 2 𝑜 Mnd x Base freeMnd I × 2 𝑜 y Base freeMnd I × 2 𝑜 z Base freeMnd I × 2 𝑜 x + freeMnd I × 2 𝑜 y + freeMnd I × 2 𝑜 z = x + freeMnd I × 2 𝑜 y + freeMnd I × 2 𝑜 z
49 37 46 47 41 48 syl13anc I V x Word I × 2 𝑜 y Word I × 2 𝑜 z Word I × 2 𝑜 x + freeMnd I × 2 𝑜 y + freeMnd I × 2 𝑜 z = x + freeMnd I × 2 𝑜 y + freeMnd I × 2 𝑜 z
50 45 49 breqtrd I V x Word I × 2 𝑜 y Word I × 2 𝑜 z Word I × 2 𝑜 x + freeMnd I × 2 𝑜 y + freeMnd I × 2 𝑜 z ˙ x + freeMnd I × 2 𝑜 y + freeMnd I × 2 𝑜 z
51 wrd0 Word I × 2 𝑜
52 51 a1i I V Word I × 2 𝑜
53 51 11 eleqtrid I V Base freeMnd I × 2 𝑜
54 53 adantr I V x Word I × 2 𝑜 Base freeMnd I × 2 𝑜
55 11 eleq2d I V x Word I × 2 𝑜 x Base freeMnd I × 2 𝑜
56 55 biimpa I V x Word I × 2 𝑜 x Base freeMnd I × 2 𝑜
57 3 8 22 frmdadd Base freeMnd I × 2 𝑜 x Base freeMnd I × 2 𝑜 + freeMnd I × 2 𝑜 x = ++ x
58 54 56 57 syl2anc I V x Word I × 2 𝑜 + freeMnd I × 2 𝑜 x = ++ x
59 ccatlid x Word I × 2 𝑜 ++ x = x
60 59 adantl I V x Word I × 2 𝑜 ++ x = x
61 58 60 eqtrd I V x Word I × 2 𝑜 + freeMnd I × 2 𝑜 x = x
62 20 adantr I V x Word I × 2 𝑜 ˙ Er Word I × 2 𝑜
63 simpr I V x Word I × 2 𝑜 x Word I × 2 𝑜
64 62 63 erref I V x Word I × 2 𝑜 x ˙ x
65 61 64 eqbrtrd I V x Word I × 2 𝑜 + freeMnd I × 2 𝑜 x ˙ x
66 revcl x Word I × 2 𝑜 reverse x Word I × 2 𝑜
67 66 adantl I V x Word I × 2 𝑜 reverse x Word I × 2 𝑜
68 eqid y I , z 2 𝑜 y 1 𝑜 z = y I , z 2 𝑜 y 1 𝑜 z
69 68 efgmf y I , z 2 𝑜 y 1 𝑜 z : I × 2 𝑜 I × 2 𝑜
70 69 a1i I V x Word I × 2 𝑜 y I , z 2 𝑜 y 1 𝑜 z : I × 2 𝑜 I × 2 𝑜
71 wrdco reverse x Word I × 2 𝑜 y I , z 2 𝑜 y 1 𝑜 z : I × 2 𝑜 I × 2 𝑜 y I , z 2 𝑜 y 1 𝑜 z reverse x Word I × 2 𝑜
72 67 70 71 syl2anc I V x Word I × 2 𝑜 y I , z 2 𝑜 y 1 𝑜 z reverse x Word I × 2 𝑜
73 11 adantr I V x Word I × 2 𝑜 Word I × 2 𝑜 = Base freeMnd I × 2 𝑜
74 72 73 eleqtrd I V x Word I × 2 𝑜 y I , z 2 𝑜 y 1 𝑜 z reverse x Base freeMnd I × 2 𝑜
75 3 8 22 frmdadd y I , z 2 𝑜 y 1 𝑜 z reverse x Base freeMnd I × 2 𝑜 x Base freeMnd I × 2 𝑜 y I , z 2 𝑜 y 1 𝑜 z reverse x + freeMnd I × 2 𝑜 x = y I , z 2 𝑜 y 1 𝑜 z reverse x ++ x
76 74 56 75 syl2anc I V x Word I × 2 𝑜 y I , z 2 𝑜 y 1 𝑜 z reverse x + freeMnd I × 2 𝑜 x = y I , z 2 𝑜 y 1 𝑜 z reverse x ++ x
77 17 eleq2d I V x I Word I × 2 𝑜 x Word I × 2 𝑜
78 77 biimpar I V x Word I × 2 𝑜 x I Word I × 2 𝑜
79 eqid v I Word I × 2 𝑜 n 0 v , w I × 2 𝑜 v splice n n ⟨“ w y I , z 2 𝑜 y 1 𝑜 z w ”⟩ = v I Word I × 2 𝑜 n 0 v , w I × 2 𝑜 v splice n n ⟨“ w y I , z 2 𝑜 y 1 𝑜 z w ”⟩
80 13 2 68 79 efginvrel1 x I Word I × 2 𝑜 y I , z 2 𝑜 y 1 𝑜 z reverse x ++ x ˙
81 78 80 syl I V x Word I × 2 𝑜 y I , z 2 𝑜 y 1 𝑜 z reverse x ++ x ˙
82 76 81 eqbrtrd I V x Word I × 2 𝑜 y I , z 2 𝑜 y 1 𝑜 z reverse x + freeMnd I × 2 𝑜 x ˙
83 4 11 12 20 21 24 35 50 52 65 72 82 qusgrp2 I V G Grp ˙ = 0 G