| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgp0.m |
|
| 2 |
|
frgp0.r |
|
| 3 |
|
eqid |
|
| 4 |
1 3 2
|
frgpval |
|
| 5 |
|
2on |
|
| 6 |
|
xpexg |
|
| 7 |
5 6
|
mpan2 |
|
| 8 |
|
eqid |
|
| 9 |
3 8
|
frmdbas |
|
| 10 |
7 9
|
syl |
|
| 11 |
10
|
eqcomd |
|
| 12 |
|
eqidd |
|
| 13 |
|
eqid |
|
| 14 |
13 2
|
efger |
|
| 15 |
|
wrdexg |
|
| 16 |
|
fvi |
|
| 17 |
7 15 16
|
3syl |
|
| 18 |
|
ereq2 |
|
| 19 |
17 18
|
syl |
|
| 20 |
14 19
|
mpbii |
|
| 21 |
|
fvexd |
|
| 22 |
|
eqid |
|
| 23 |
1 3 2 22
|
frgpcpbl |
|
| 24 |
23
|
a1i |
|
| 25 |
3
|
frmdmnd |
|
| 26 |
7 25
|
syl |
|
| 27 |
26
|
3ad2ant1 |
|
| 28 |
|
simp2 |
|
| 29 |
11
|
3ad2ant1 |
|
| 30 |
28 29
|
eleqtrd |
|
| 31 |
|
simp3 |
|
| 32 |
31 29
|
eleqtrd |
|
| 33 |
8 22
|
mndcl |
|
| 34 |
27 30 32 33
|
syl3anc |
|
| 35 |
34 29
|
eleqtrrd |
|
| 36 |
20
|
adantr |
|
| 37 |
26
|
adantr |
|
| 38 |
34
|
3adant3r3 |
|
| 39 |
|
simpr3 |
|
| 40 |
11
|
adantr |
|
| 41 |
39 40
|
eleqtrd |
|
| 42 |
8 22
|
mndcl |
|
| 43 |
37 38 41 42
|
syl3anc |
|
| 44 |
43 40
|
eleqtrrd |
|
| 45 |
36 44
|
erref |
|
| 46 |
30
|
3adant3r3 |
|
| 47 |
32
|
3adant3r3 |
|
| 48 |
8 22
|
mndass |
|
| 49 |
37 46 47 41 48
|
syl13anc |
|
| 50 |
45 49
|
breqtrd |
|
| 51 |
|
wrd0 |
|
| 52 |
51
|
a1i |
|
| 53 |
51 11
|
eleqtrid |
|
| 54 |
53
|
adantr |
|
| 55 |
11
|
eleq2d |
|
| 56 |
55
|
biimpa |
|
| 57 |
3 8 22
|
frmdadd |
|
| 58 |
54 56 57
|
syl2anc |
|
| 59 |
|
ccatlid |
|
| 60 |
59
|
adantl |
|
| 61 |
58 60
|
eqtrd |
|
| 62 |
20
|
adantr |
|
| 63 |
|
simpr |
|
| 64 |
62 63
|
erref |
|
| 65 |
61 64
|
eqbrtrd |
|
| 66 |
|
revcl |
|
| 67 |
66
|
adantl |
|
| 68 |
|
eqid |
|
| 69 |
68
|
efgmf |
|
| 70 |
69
|
a1i |
|
| 71 |
|
wrdco |
|
| 72 |
67 70 71
|
syl2anc |
|
| 73 |
11
|
adantr |
|
| 74 |
72 73
|
eleqtrd |
|
| 75 |
3 8 22
|
frmdadd |
|
| 76 |
74 56 75
|
syl2anc |
|
| 77 |
17
|
eleq2d |
|
| 78 |
77
|
biimpar |
|
| 79 |
|
eqid |
|
| 80 |
13 2 68 79
|
efginvrel1 |
|
| 81 |
78 80
|
syl |
|
| 82 |
76 81
|
eqbrtrd |
|
| 83 |
4 11 12 20 21 24 35 50 52 65 72 82
|
qusgrp2 |
|