Step |
Hyp |
Ref |
Expression |
1 |
|
frgp0.m |
|
2 |
|
frgp0.r |
|
3 |
|
eqid |
|
4 |
1 3 2
|
frgpval |
|
5 |
|
2on |
|
6 |
|
xpexg |
|
7 |
5 6
|
mpan2 |
|
8 |
|
eqid |
|
9 |
3 8
|
frmdbas |
|
10 |
7 9
|
syl |
|
11 |
10
|
eqcomd |
|
12 |
|
eqidd |
|
13 |
|
eqid |
|
14 |
13 2
|
efger |
|
15 |
|
wrdexg |
|
16 |
|
fvi |
|
17 |
7 15 16
|
3syl |
|
18 |
|
ereq2 |
|
19 |
17 18
|
syl |
|
20 |
14 19
|
mpbii |
|
21 |
|
fvexd |
|
22 |
|
eqid |
|
23 |
1 3 2 22
|
frgpcpbl |
|
24 |
23
|
a1i |
|
25 |
3
|
frmdmnd |
|
26 |
7 25
|
syl |
|
27 |
26
|
3ad2ant1 |
|
28 |
|
simp2 |
|
29 |
11
|
3ad2ant1 |
|
30 |
28 29
|
eleqtrd |
|
31 |
|
simp3 |
|
32 |
31 29
|
eleqtrd |
|
33 |
8 22
|
mndcl |
|
34 |
27 30 32 33
|
syl3anc |
|
35 |
34 29
|
eleqtrrd |
|
36 |
20
|
adantr |
|
37 |
26
|
adantr |
|
38 |
34
|
3adant3r3 |
|
39 |
|
simpr3 |
|
40 |
11
|
adantr |
|
41 |
39 40
|
eleqtrd |
|
42 |
8 22
|
mndcl |
|
43 |
37 38 41 42
|
syl3anc |
|
44 |
43 40
|
eleqtrrd |
|
45 |
36 44
|
erref |
|
46 |
30
|
3adant3r3 |
|
47 |
32
|
3adant3r3 |
|
48 |
8 22
|
mndass |
|
49 |
37 46 47 41 48
|
syl13anc |
|
50 |
45 49
|
breqtrd |
|
51 |
|
wrd0 |
|
52 |
51
|
a1i |
|
53 |
51 11
|
eleqtrid |
|
54 |
53
|
adantr |
|
55 |
11
|
eleq2d |
|
56 |
55
|
biimpa |
|
57 |
3 8 22
|
frmdadd |
|
58 |
54 56 57
|
syl2anc |
|
59 |
|
ccatlid |
|
60 |
59
|
adantl |
|
61 |
58 60
|
eqtrd |
|
62 |
20
|
adantr |
|
63 |
|
simpr |
|
64 |
62 63
|
erref |
|
65 |
61 64
|
eqbrtrd |
|
66 |
|
revcl |
|
67 |
66
|
adantl |
|
68 |
|
eqid |
|
69 |
68
|
efgmf |
|
70 |
69
|
a1i |
|
71 |
|
wrdco |
|
72 |
67 70 71
|
syl2anc |
|
73 |
11
|
adantr |
|
74 |
72 73
|
eleqtrd |
|
75 |
3 8 22
|
frmdadd |
|
76 |
74 56 75
|
syl2anc |
|
77 |
17
|
eleq2d |
|
78 |
77
|
biimpar |
|
79 |
|
eqid |
|
80 |
13 2 68 79
|
efginvrel1 |
|
81 |
78 80
|
syl |
|
82 |
76 81
|
eqbrtrd |
|
83 |
4 11 12 20 21 24 35 50 52 65 72 82
|
qusgrp2 |
|