Step |
Hyp |
Ref |
Expression |
1 |
|
frgpadd.w |
|
2 |
|
frgpadd.g |
|
3 |
|
frgpadd.r |
|
4 |
|
frgpadd.n |
|
5 |
|
simpl |
|
6 |
|
simpr |
|
7 |
1
|
efgrcl |
|
8 |
7
|
adantr |
|
9 |
8
|
simpld |
|
10 |
|
eqid |
|
11 |
2 10 3
|
frgpval |
|
12 |
9 11
|
syl |
|
13 |
8
|
simprd |
|
14 |
|
2on |
|
15 |
|
xpexg |
|
16 |
9 14 15
|
sylancl |
|
17 |
|
eqid |
|
18 |
10 17
|
frmdbas |
|
19 |
16 18
|
syl |
|
20 |
13 19
|
eqtr4d |
|
21 |
1 3
|
efger |
|
22 |
21
|
a1i |
|
23 |
10
|
frmdmnd |
|
24 |
16 23
|
syl |
|
25 |
|
eqid |
|
26 |
2 10 3 25
|
frgpcpbl |
|
27 |
26
|
a1i |
|
28 |
24
|
adantr |
|
29 |
|
simprl |
|
30 |
20
|
adantr |
|
31 |
29 30
|
eleqtrd |
|
32 |
|
simprr |
|
33 |
32 30
|
eleqtrd |
|
34 |
17 25
|
mndcl |
|
35 |
28 31 33 34
|
syl3anc |
|
36 |
35 30
|
eleqtrrd |
|
37 |
12 20 22 24 27 36 25 4
|
qusaddval |
|
38 |
5 6 37
|
mpd3an23 |
|
39 |
5 20
|
eleqtrd |
|
40 |
6 20
|
eleqtrd |
|
41 |
10 17 25
|
frmdadd |
|
42 |
39 40 41
|
syl2anc |
|
43 |
42
|
eceq1d |
|
44 |
38 43
|
eqtrd |
|