| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgpadd.w |
|
| 2 |
|
frgpadd.g |
|
| 3 |
|
frgpadd.r |
|
| 4 |
|
frgpadd.n |
|
| 5 |
|
simpl |
|
| 6 |
|
simpr |
|
| 7 |
1
|
efgrcl |
|
| 8 |
7
|
adantr |
|
| 9 |
8
|
simpld |
|
| 10 |
|
eqid |
|
| 11 |
2 10 3
|
frgpval |
|
| 12 |
9 11
|
syl |
|
| 13 |
8
|
simprd |
|
| 14 |
|
2on |
|
| 15 |
|
xpexg |
|
| 16 |
9 14 15
|
sylancl |
|
| 17 |
|
eqid |
|
| 18 |
10 17
|
frmdbas |
|
| 19 |
16 18
|
syl |
|
| 20 |
13 19
|
eqtr4d |
|
| 21 |
1 3
|
efger |
|
| 22 |
21
|
a1i |
|
| 23 |
10
|
frmdmnd |
|
| 24 |
16 23
|
syl |
|
| 25 |
|
eqid |
|
| 26 |
2 10 3 25
|
frgpcpbl |
|
| 27 |
26
|
a1i |
|
| 28 |
24
|
adantr |
|
| 29 |
|
simprl |
|
| 30 |
20
|
adantr |
|
| 31 |
29 30
|
eleqtrd |
|
| 32 |
|
simprr |
|
| 33 |
32 30
|
eleqtrd |
|
| 34 |
17 25
|
mndcl |
|
| 35 |
28 31 33 34
|
syl3anc |
|
| 36 |
35 30
|
eleqtrrd |
|
| 37 |
12 20 22 24 27 36 25 4
|
qusaddval |
|
| 38 |
5 6 37
|
mpd3an23 |
|
| 39 |
5 20
|
eleqtrd |
|
| 40 |
6 20
|
eleqtrd |
|
| 41 |
10 17 25
|
frmdadd |
|
| 42 |
39 40 41
|
syl2anc |
|
| 43 |
42
|
eceq1d |
|
| 44 |
38 43
|
eqtrd |
|