Metamath Proof Explorer


Theorem frgpadd

Description: Addition in the free group is given by concatenation. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses frgpadd.w W = I Word I × 2 𝑜
frgpadd.g G = freeGrp I
frgpadd.r ˙ = ~ FG I
frgpadd.n + ˙ = + G
Assertion frgpadd A W B W A ˙ + ˙ B ˙ = A ++ B ˙

Proof

Step Hyp Ref Expression
1 frgpadd.w W = I Word I × 2 𝑜
2 frgpadd.g G = freeGrp I
3 frgpadd.r ˙ = ~ FG I
4 frgpadd.n + ˙ = + G
5 simpl A W B W A W
6 simpr A W B W B W
7 1 efgrcl A W I V W = Word I × 2 𝑜
8 7 adantr A W B W I V W = Word I × 2 𝑜
9 8 simpld A W B W I V
10 eqid freeMnd I × 2 𝑜 = freeMnd I × 2 𝑜
11 2 10 3 frgpval I V G = freeMnd I × 2 𝑜 / 𝑠 ˙
12 9 11 syl A W B W G = freeMnd I × 2 𝑜 / 𝑠 ˙
13 8 simprd A W B W W = Word I × 2 𝑜
14 2on 2 𝑜 On
15 xpexg I V 2 𝑜 On I × 2 𝑜 V
16 9 14 15 sylancl A W B W I × 2 𝑜 V
17 eqid Base freeMnd I × 2 𝑜 = Base freeMnd I × 2 𝑜
18 10 17 frmdbas I × 2 𝑜 V Base freeMnd I × 2 𝑜 = Word I × 2 𝑜
19 16 18 syl A W B W Base freeMnd I × 2 𝑜 = Word I × 2 𝑜
20 13 19 eqtr4d A W B W W = Base freeMnd I × 2 𝑜
21 1 3 efger ˙ Er W
22 21 a1i A W B W ˙ Er W
23 10 frmdmnd I × 2 𝑜 V freeMnd I × 2 𝑜 Mnd
24 16 23 syl A W B W freeMnd I × 2 𝑜 Mnd
25 eqid + freeMnd I × 2 𝑜 = + freeMnd I × 2 𝑜
26 2 10 3 25 frgpcpbl a ˙ b c ˙ d a + freeMnd I × 2 𝑜 c ˙ b + freeMnd I × 2 𝑜 d
27 26 a1i A W B W a ˙ b c ˙ d a + freeMnd I × 2 𝑜 c ˙ b + freeMnd I × 2 𝑜 d
28 24 adantr A W B W b W d W freeMnd I × 2 𝑜 Mnd
29 simprl A W B W b W d W b W
30 20 adantr A W B W b W d W W = Base freeMnd I × 2 𝑜
31 29 30 eleqtrd A W B W b W d W b Base freeMnd I × 2 𝑜
32 simprr A W B W b W d W d W
33 32 30 eleqtrd A W B W b W d W d Base freeMnd I × 2 𝑜
34 17 25 mndcl freeMnd I × 2 𝑜 Mnd b Base freeMnd I × 2 𝑜 d Base freeMnd I × 2 𝑜 b + freeMnd I × 2 𝑜 d Base freeMnd I × 2 𝑜
35 28 31 33 34 syl3anc A W B W b W d W b + freeMnd I × 2 𝑜 d Base freeMnd I × 2 𝑜
36 35 30 eleqtrrd A W B W b W d W b + freeMnd I × 2 𝑜 d W
37 12 20 22 24 27 36 25 4 qusaddval A W B W A W B W A ˙ + ˙ B ˙ = A + freeMnd I × 2 𝑜 B ˙
38 5 6 37 mpd3an23 A W B W A ˙ + ˙ B ˙ = A + freeMnd I × 2 𝑜 B ˙
39 5 20 eleqtrd A W B W A Base freeMnd I × 2 𝑜
40 6 20 eleqtrd A W B W B Base freeMnd I × 2 𝑜
41 10 17 25 frmdadd A Base freeMnd I × 2 𝑜 B Base freeMnd I × 2 𝑜 A + freeMnd I × 2 𝑜 B = A ++ B
42 39 40 41 syl2anc A W B W A + freeMnd I × 2 𝑜 B = A ++ B
43 42 eceq1d A W B W A + freeMnd I × 2 𝑜 B ˙ = A ++ B ˙
44 38 43 eqtrd A W B W A ˙ + ˙ B ˙ = A ++ B ˙