Metamath Proof Explorer


Theorem frgpcpbl

Description: Compatibility of the group operation with the free group equivalence relation. (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses frgpval.m G = freeGrp I
frgpval.b M = freeMnd I × 2 𝑜
frgpval.r ˙ = ~ FG I
frgpcpbl.p + ˙ = + M
Assertion frgpcpbl A ˙ C B ˙ D A + ˙ B ˙ C + ˙ D

Proof

Step Hyp Ref Expression
1 frgpval.m G = freeGrp I
2 frgpval.b M = freeMnd I × 2 𝑜
3 frgpval.r ˙ = ~ FG I
4 frgpcpbl.p + ˙ = + M
5 eqid I Word I × 2 𝑜 = I Word I × 2 𝑜
6 eqid y I , z 2 𝑜 y 1 𝑜 z = y I , z 2 𝑜 y 1 𝑜 z
7 eqid v I Word I × 2 𝑜 n 0 v , w I × 2 𝑜 v splice n n ⟨“ w y I , z 2 𝑜 y 1 𝑜 z w ”⟩ = v I Word I × 2 𝑜 n 0 v , w I × 2 𝑜 v splice n n ⟨“ w y I , z 2 𝑜 y 1 𝑜 z w ”⟩
8 eqid I Word I × 2 𝑜 x I Word I × 2 𝑜 ran v I Word I × 2 𝑜 n 0 v , w I × 2 𝑜 v splice n n ⟨“ w y I , z 2 𝑜 y 1 𝑜 z w ”⟩ x = I Word I × 2 𝑜 x I Word I × 2 𝑜 ran v I Word I × 2 𝑜 n 0 v , w I × 2 𝑜 v splice n n ⟨“ w y I , z 2 𝑜 y 1 𝑜 z w ”⟩ x
9 eqid m t Word I Word I × 2 𝑜 | t 0 I Word I × 2 𝑜 x I Word I × 2 𝑜 ran v I Word I × 2 𝑜 n 0 v , w I × 2 𝑜 v splice n n ⟨“ w y I , z 2 𝑜 y 1 𝑜 z w ”⟩ x k 1 ..^ t t k ran v I Word I × 2 𝑜 n 0 v , w I × 2 𝑜 v splice n n ⟨“ w y I , z 2 𝑜 y 1 𝑜 z w ”⟩ t k 1 m m 1 = m t Word I Word I × 2 𝑜 | t 0 I Word I × 2 𝑜 x I Word I × 2 𝑜 ran v I Word I × 2 𝑜 n 0 v , w I × 2 𝑜 v splice n n ⟨“ w y I , z 2 𝑜 y 1 𝑜 z w ”⟩ x k 1 ..^ t t k ran v I Word I × 2 𝑜 n 0 v , w I × 2 𝑜 v splice n n ⟨“ w y I , z 2 𝑜 y 1 𝑜 z w ”⟩ t k 1 m m 1
10 5 3 6 7 8 9 efgcpbl2 A ˙ C B ˙ D A ++ B ˙ C ++ D
11 5 3 efger ˙ Er I Word I × 2 𝑜
12 11 a1i A ˙ C B ˙ D ˙ Er I Word I × 2 𝑜
13 simpl A ˙ C B ˙ D A ˙ C
14 12 13 ercl A ˙ C B ˙ D A I Word I × 2 𝑜
15 5 efgrcl A I Word I × 2 𝑜 I V I Word I × 2 𝑜 = Word I × 2 𝑜
16 14 15 syl A ˙ C B ˙ D I V I Word I × 2 𝑜 = Word I × 2 𝑜
17 16 simprd A ˙ C B ˙ D I Word I × 2 𝑜 = Word I × 2 𝑜
18 16 simpld A ˙ C B ˙ D I V
19 2on 2 𝑜 On
20 xpexg I V 2 𝑜 On I × 2 𝑜 V
21 18 19 20 sylancl A ˙ C B ˙ D I × 2 𝑜 V
22 eqid Base M = Base M
23 2 22 frmdbas I × 2 𝑜 V Base M = Word I × 2 𝑜
24 21 23 syl A ˙ C B ˙ D Base M = Word I × 2 𝑜
25 17 24 eqtr4d A ˙ C B ˙ D I Word I × 2 𝑜 = Base M
26 14 25 eleqtrd A ˙ C B ˙ D A Base M
27 simpr A ˙ C B ˙ D B ˙ D
28 12 27 ercl A ˙ C B ˙ D B I Word I × 2 𝑜
29 28 25 eleqtrd A ˙ C B ˙ D B Base M
30 2 22 4 frmdadd A Base M B Base M A + ˙ B = A ++ B
31 26 29 30 syl2anc A ˙ C B ˙ D A + ˙ B = A ++ B
32 12 13 ercl2 A ˙ C B ˙ D C I Word I × 2 𝑜
33 32 25 eleqtrd A ˙ C B ˙ D C Base M
34 12 27 ercl2 A ˙ C B ˙ D D I Word I × 2 𝑜
35 34 25 eleqtrd A ˙ C B ˙ D D Base M
36 2 22 4 frmdadd C Base M D Base M C + ˙ D = C ++ D
37 33 35 36 syl2anc A ˙ C B ˙ D C + ˙ D = C ++ D
38 10 31 37 3brtr4d A ˙ C B ˙ D A + ˙ B ˙ C + ˙ D