Metamath Proof Explorer


Theorem frgpcyg

Description: A free group is cyclic iff it has zero or one generator. (Contributed by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 18-Apr-2021)

Ref Expression
Hypothesis frgpcyg.g G = freeGrp I
Assertion frgpcyg I 1 𝑜 G CycGrp

Proof

Step Hyp Ref Expression
1 frgpcyg.g G = freeGrp I
2 brdom2 I 1 𝑜 I 1 𝑜 I 1 𝑜
3 sdom1 I 1 𝑜 I =
4 fveq2 I = freeGrp I = freeGrp
5 1 4 eqtrid I = G = freeGrp
6 0ex V
7 eqid freeGrp = freeGrp
8 7 frgpgrp V freeGrp Grp
9 6 8 ax-mp freeGrp Grp
10 eqid Base freeGrp = Base freeGrp
11 7 10 0frgp Base freeGrp 1 𝑜
12 10 0cyg freeGrp Grp Base freeGrp 1 𝑜 freeGrp CycGrp
13 9 11 12 mp2an freeGrp CycGrp
14 5 13 eqeltrdi I = G CycGrp
15 3 14 sylbi I 1 𝑜 G CycGrp
16 eqid Base G = Base G
17 eqid G = G
18 relen Rel
19 18 brrelex1i I 1 𝑜 I V
20 1 frgpgrp I V G Grp
21 19 20 syl I 1 𝑜 G Grp
22 eqid ~ FG I = ~ FG I
23 eqid var FGrp I = var FGrp I
24 22 23 1 16 vrgpf I V var FGrp I : I Base G
25 19 24 syl I 1 𝑜 var FGrp I : I Base G
26 en1uniel I 1 𝑜 I I
27 25 26 ffvelrnd I 1 𝑜 var FGrp I I Base G
28 zringgrp ring Grp
29 19 uniexd I 1 𝑜 I V
30 1zzd I 1 𝑜 1
31 29 30 fsnd I 1 𝑜 I 1 : I
32 en1b I 1 𝑜 I = I
33 32 biimpi I 1 𝑜 I = I
34 33 feq2d I 1 𝑜 I 1 : I I 1 : I
35 31 34 mpbird I 1 𝑜 I 1 : I
36 zringbas = Base ring
37 1 36 23 frgpup3 ring Grp I V I 1 : I ∃! f G GrpHom ring f var FGrp I = I 1
38 28 19 35 37 mp3an2i I 1 𝑜 ∃! f G GrpHom ring f var FGrp I = I 1
39 38 adantr I 1 𝑜 x Base G ∃! f G GrpHom ring f var FGrp I = I 1
40 reurex ∃! f G GrpHom ring f var FGrp I = I 1 f G GrpHom ring f var FGrp I = I 1
41 39 40 syl I 1 𝑜 x Base G f G GrpHom ring f var FGrp I = I 1
42 fveq1 f var FGrp I = I 1 f var FGrp I I = I 1 I
43 25 26 fvco3d I 1 𝑜 f var FGrp I I = f var FGrp I I
44 1z 1
45 fvsng I V 1 I 1 I = 1
46 29 44 45 sylancl I 1 𝑜 I 1 I = 1
47 43 46 eqeq12d I 1 𝑜 f var FGrp I I = I 1 I f var FGrp I I = 1
48 42 47 syl5ib I 1 𝑜 f var FGrp I = I 1 f var FGrp I I = 1
49 48 ad2antrr I 1 𝑜 x Base G f G GrpHom ring f var FGrp I = I 1 f var FGrp I I = 1
50 16 36 ghmf f G GrpHom ring f : Base G
51 50 ad2antrl I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 f : Base G
52 51 ffvelrnda I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 x Base G f x
53 52 an32s I 1 𝑜 x Base G f G GrpHom ring f var FGrp I I = 1 f x
54 mptresid I Base G = x Base G x
55 1 16 23 frgpup3 G Grp I V var FGrp I : I Base G ∃! g G GrpHom G g var FGrp I = var FGrp I
56 21 19 25 55 syl3anc I 1 𝑜 ∃! g G GrpHom G g var FGrp I = var FGrp I
57 reurmo ∃! g G GrpHom G g var FGrp I = var FGrp I * g G GrpHom G g var FGrp I = var FGrp I
58 56 57 syl I 1 𝑜 * g G GrpHom G g var FGrp I = var FGrp I
59 58 adantr I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 * g G GrpHom G g var FGrp I = var FGrp I
60 21 adantr I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 G Grp
61 16 idghm G Grp I Base G G GrpHom G
62 60 61 syl I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 I Base G G GrpHom G
63 25 adantr I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 var FGrp I : I Base G
64 fcoi2 var FGrp I : I Base G I Base G var FGrp I = var FGrp I
65 63 64 syl I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 I Base G var FGrp I = var FGrp I
66 51 feqmptd I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 f = x Base G f x
67 eqidd I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 n n G var FGrp I I = n n G var FGrp I I
68 oveq1 n = f x n G var FGrp I I = f x G var FGrp I I
69 52 66 67 68 fmptco I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 n n G var FGrp I I f = x Base G f x G var FGrp I I
70 27 adantr I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 var FGrp I I Base G
71 eqid n n G var FGrp I I = n n G var FGrp I I
72 17 71 16 mulgghm2 G Grp var FGrp I I Base G n n G var FGrp I I ring GrpHom G
73 60 70 72 syl2anc I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 n n G var FGrp I I ring GrpHom G
74 simprl I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 f G GrpHom ring
75 ghmco n n G var FGrp I I ring GrpHom G f G GrpHom ring n n G var FGrp I I f G GrpHom G
76 73 74 75 syl2anc I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 n n G var FGrp I I f G GrpHom G
77 69 76 eqeltrrd I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 x Base G f x G var FGrp I I G GrpHom G
78 33 adantr I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 I = I
79 78 eleq2d I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 y I y I
80 simprr I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 f var FGrp I I = 1
81 80 oveq1d I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 f var FGrp I I G var FGrp I I = 1 G var FGrp I I
82 16 17 mulg1 var FGrp I I Base G 1 G var FGrp I I = var FGrp I I
83 70 82 syl I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 1 G var FGrp I I = var FGrp I I
84 81 83 eqtrd I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 f var FGrp I I G var FGrp I I = var FGrp I I
85 elsni y I y = I
86 85 fveq2d y I var FGrp I y = var FGrp I I
87 86 fveq2d y I f var FGrp I y = f var FGrp I I
88 87 oveq1d y I f var FGrp I y G var FGrp I I = f var FGrp I I G var FGrp I I
89 88 86 eqeq12d y I f var FGrp I y G var FGrp I I = var FGrp I y f var FGrp I I G var FGrp I I = var FGrp I I
90 84 89 syl5ibrcom I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 y I f var FGrp I y G var FGrp I I = var FGrp I y
91 79 90 sylbid I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 y I f var FGrp I y G var FGrp I I = var FGrp I y
92 91 imp I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 y I f var FGrp I y G var FGrp I I = var FGrp I y
93 92 mpteq2dva I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 y I f var FGrp I y G var FGrp I I = y I var FGrp I y
94 63 ffvelrnda I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 y I var FGrp I y Base G
95 63 feqmptd I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 var FGrp I = y I var FGrp I y
96 eqidd I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 x Base G f x G var FGrp I I = x Base G f x G var FGrp I I
97 fveq2 x = var FGrp I y f x = f var FGrp I y
98 97 oveq1d x = var FGrp I y f x G var FGrp I I = f var FGrp I y G var FGrp I I
99 94 95 96 98 fmptco I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 x Base G f x G var FGrp I I var FGrp I = y I f var FGrp I y G var FGrp I I
100 93 99 95 3eqtr4d I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 x Base G f x G var FGrp I I var FGrp I = var FGrp I
101 coeq1 g = I Base G g var FGrp I = I Base G var FGrp I
102 101 eqeq1d g = I Base G g var FGrp I = var FGrp I I Base G var FGrp I = var FGrp I
103 coeq1 g = x Base G f x G var FGrp I I g var FGrp I = x Base G f x G var FGrp I I var FGrp I
104 103 eqeq1d g = x Base G f x G var FGrp I I g var FGrp I = var FGrp I x Base G f x G var FGrp I I var FGrp I = var FGrp I
105 102 104 rmoi * g G GrpHom G g var FGrp I = var FGrp I I Base G G GrpHom G I Base G var FGrp I = var FGrp I x Base G f x G var FGrp I I G GrpHom G x Base G f x G var FGrp I I var FGrp I = var FGrp I I Base G = x Base G f x G var FGrp I I
106 59 62 65 77 100 105 syl122anc I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 I Base G = x Base G f x G var FGrp I I
107 54 106 eqtr3id I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 x Base G x = x Base G f x G var FGrp I I
108 mpteqb x Base G x Base G x Base G x = x Base G f x G var FGrp I I x Base G x = f x G var FGrp I I
109 id x Base G x Base G
110 108 109 mprg x Base G x = x Base G f x G var FGrp I I x Base G x = f x G var FGrp I I
111 107 110 sylib I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 x Base G x = f x G var FGrp I I
112 111 r19.21bi I 1 𝑜 f G GrpHom ring f var FGrp I I = 1 x Base G x = f x G var FGrp I I
113 112 an32s I 1 𝑜 x Base G f G GrpHom ring f var FGrp I I = 1 x = f x G var FGrp I I
114 68 rspceeqv f x x = f x G var FGrp I I n x = n G var FGrp I I
115 53 113 114 syl2anc I 1 𝑜 x Base G f G GrpHom ring f var FGrp I I = 1 n x = n G var FGrp I I
116 115 expr I 1 𝑜 x Base G f G GrpHom ring f var FGrp I I = 1 n x = n G var FGrp I I
117 49 116 syld I 1 𝑜 x Base G f G GrpHom ring f var FGrp I = I 1 n x = n G var FGrp I I
118 117 rexlimdva I 1 𝑜 x Base G f G GrpHom ring f var FGrp I = I 1 n x = n G var FGrp I I
119 41 118 mpd I 1 𝑜 x Base G n x = n G var FGrp I I
120 16 17 21 27 119 iscygd I 1 𝑜 G CycGrp
121 15 120 jaoi I 1 𝑜 I 1 𝑜 G CycGrp
122 2 121 sylbi I 1 𝑜 G CycGrp
123 cygabl G CycGrp G Abel
124 1 frgpnabl 1 𝑜 I ¬ G Abel
125 124 con2i G Abel ¬ 1 𝑜 I
126 ablgrp G Abel G Grp
127 eqid 0 G = 0 G
128 16 127 grpidcl G Grp 0 G Base G
129 1 16 elbasfv 0 G Base G I V
130 126 128 129 3syl G Abel I V
131 1onn 1 𝑜 ω
132 nnfi 1 𝑜 ω 1 𝑜 Fin
133 131 132 ax-mp 1 𝑜 Fin
134 fidomtri2 I V 1 𝑜 Fin I 1 𝑜 ¬ 1 𝑜 I
135 130 133 134 sylancl G Abel I 1 𝑜 ¬ 1 𝑜 I
136 125 135 mpbird G Abel I 1 𝑜
137 123 136 syl G CycGrp I 1 𝑜
138 122 137 impbii I 1 𝑜 G CycGrp