Database
BASIC ALGEBRAIC STRUCTURES
Groups
Free groups
frgpgrp
Next ⟩
frgpadd
Metamath Proof Explorer
Ascii
Unicode
Theorem
frgpgrp
Description:
The free group is a group.
(Contributed by
Mario Carneiro
, 1-Oct-2015)
Ref
Expression
Hypothesis
frgpgrp.g
⊢
G
=
freeGrp
⁡
I
Assertion
frgpgrp
⊢
I
∈
V
→
G
∈
Grp
Proof
Step
Hyp
Ref
Expression
1
frgpgrp.g
⊢
G
=
freeGrp
⁡
I
2
eqid
⊢
~
FG
⁡
I
=
~
FG
⁡
I
3
1
2
frgp0
⊢
I
∈
V
→
G
∈
Grp
∧
∅
~
FG
⁡
I
=
0
G
4
3
simpld
⊢
I
∈
V
→
G
∈
Grp