Metamath Proof Explorer


Theorem frgpinv

Description: The inverse of an element of the free group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses frgpadd.w W = I Word I × 2 𝑜
frgpadd.g G = freeGrp I
frgpadd.r ˙ = ~ FG I
frgpinv.n N = inv g G
frgpinv.m M = y I , z 2 𝑜 y 1 𝑜 z
Assertion frgpinv A W N A ˙ = M reverse A ˙

Proof

Step Hyp Ref Expression
1 frgpadd.w W = I Word I × 2 𝑜
2 frgpadd.g G = freeGrp I
3 frgpadd.r ˙ = ~ FG I
4 frgpinv.n N = inv g G
5 frgpinv.m M = y I , z 2 𝑜 y 1 𝑜 z
6 fviss I Word I × 2 𝑜 Word I × 2 𝑜
7 1 6 eqsstri W Word I × 2 𝑜
8 7 sseli A W A Word I × 2 𝑜
9 revcl A Word I × 2 𝑜 reverse A Word I × 2 𝑜
10 8 9 syl A W reverse A Word I × 2 𝑜
11 5 efgmf M : I × 2 𝑜 I × 2 𝑜
12 wrdco reverse A Word I × 2 𝑜 M : I × 2 𝑜 I × 2 𝑜 M reverse A Word I × 2 𝑜
13 10 11 12 sylancl A W M reverse A Word I × 2 𝑜
14 1 efgrcl A W I V W = Word I × 2 𝑜
15 14 simprd A W W = Word I × 2 𝑜
16 13 15 eleqtrrd A W M reverse A W
17 eqid + G = + G
18 1 2 3 17 frgpadd A W M reverse A W A ˙ + G M reverse A ˙ = A ++ M reverse A ˙
19 16 18 mpdan A W A ˙ + G M reverse A ˙ = A ++ M reverse A ˙
20 1 3 efger ˙ Er W
21 20 a1i A W ˙ Er W
22 eqid v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩ = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
23 1 3 5 22 efginvrel2 A W A ++ M reverse A ˙
24 21 23 erthi A W A ++ M reverse A ˙ = ˙
25 2 3 frgp0 I V G Grp ˙ = 0 G
26 25 adantr I V W = Word I × 2 𝑜 G Grp ˙ = 0 G
27 14 26 syl A W G Grp ˙ = 0 G
28 27 simprd A W ˙ = 0 G
29 19 24 28 3eqtrd A W A ˙ + G M reverse A ˙ = 0 G
30 27 simpld A W G Grp
31 eqid Base G = Base G
32 2 3 1 31 frgpeccl A W A ˙ Base G
33 2 3 1 31 frgpeccl M reverse A W M reverse A ˙ Base G
34 16 33 syl A W M reverse A ˙ Base G
35 eqid 0 G = 0 G
36 31 17 35 4 grpinvid1 G Grp A ˙ Base G M reverse A ˙ Base G N A ˙ = M reverse A ˙ A ˙ + G M reverse A ˙ = 0 G
37 30 32 34 36 syl3anc A W N A ˙ = M reverse A ˙ A ˙ + G M reverse A ˙ = 0 G
38 29 37 mpbird A W N A ˙ = M reverse A ˙