Metamath Proof Explorer


Theorem frgpmhm

Description: The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses frgpmhm.m M = freeMnd I × 2 𝑜
frgpmhm.w W = Base M
frgpmhm.g G = freeGrp I
frgpmhm.r ˙ = ~ FG I
frgpmhm.f F = x W x ˙
Assertion frgpmhm I V F M MndHom G

Proof

Step Hyp Ref Expression
1 frgpmhm.m M = freeMnd I × 2 𝑜
2 frgpmhm.w W = Base M
3 frgpmhm.g G = freeGrp I
4 frgpmhm.r ˙ = ~ FG I
5 frgpmhm.f F = x W x ˙
6 2on 2 𝑜 On
7 xpexg I V 2 𝑜 On I × 2 𝑜 V
8 6 7 mpan2 I V I × 2 𝑜 V
9 1 frmdmnd I × 2 𝑜 V M Mnd
10 8 9 syl I V M Mnd
11 3 frgpgrp I V G Grp
12 11 grpmndd I V G Mnd
13 1 2 frmdbas I × 2 𝑜 V W = Word I × 2 𝑜
14 wrdexg I × 2 𝑜 V Word I × 2 𝑜 V
15 fvi Word I × 2 𝑜 V I Word I × 2 𝑜 = Word I × 2 𝑜
16 14 15 syl I × 2 𝑜 V I Word I × 2 𝑜 = Word I × 2 𝑜
17 13 16 eqtr4d I × 2 𝑜 V W = I Word I × 2 𝑜
18 8 17 syl I V W = I Word I × 2 𝑜
19 18 eleq2d I V x W x I Word I × 2 𝑜
20 19 biimpa I V x W x I Word I × 2 𝑜
21 eqid I Word I × 2 𝑜 = I Word I × 2 𝑜
22 eqid Base G = Base G
23 3 4 21 22 frgpeccl x I Word I × 2 𝑜 x ˙ Base G
24 20 23 syl I V x W x ˙ Base G
25 24 5 fmptd I V F : W Base G
26 21 4 efger ˙ Er I Word I × 2 𝑜
27 ereq2 W = I Word I × 2 𝑜 ˙ Er W ˙ Er I Word I × 2 𝑜
28 18 27 syl I V ˙ Er W ˙ Er I Word I × 2 𝑜
29 26 28 mpbiri I V ˙ Er W
30 29 adantr I V a W b W ˙ Er W
31 2 fvexi W V
32 31 a1i I V a W b W W V
33 30 32 5 divsfval I V a W b W F a ++ b = a ++ b ˙
34 eqid + M = + M
35 1 2 34 frmdadd a W b W a + M b = a ++ b
36 35 adantl I V a W b W a + M b = a ++ b
37 36 fveq2d I V a W b W F a + M b = F a ++ b
38 30 32 5 divsfval I V a W b W F a = a ˙
39 30 32 5 divsfval I V a W b W F b = b ˙
40 38 39 oveq12d I V a W b W F a + G F b = a ˙ + G b ˙
41 18 eleq2d I V a W a I Word I × 2 𝑜
42 18 eleq2d I V b W b I Word I × 2 𝑜
43 41 42 anbi12d I V a W b W a I Word I × 2 𝑜 b I Word I × 2 𝑜
44 43 biimpa I V a W b W a I Word I × 2 𝑜 b I Word I × 2 𝑜
45 eqid + G = + G
46 21 3 4 45 frgpadd a I Word I × 2 𝑜 b I Word I × 2 𝑜 a ˙ + G b ˙ = a ++ b ˙
47 44 46 syl I V a W b W a ˙ + G b ˙ = a ++ b ˙
48 40 47 eqtrd I V a W b W F a + G F b = a ++ b ˙
49 33 37 48 3eqtr4d I V a W b W F a + M b = F a + G F b
50 49 ralrimivva I V a W b W F a + M b = F a + G F b
51 31 a1i I V W V
52 29 51 5 divsfval I V F = ˙
53 3 4 frgp0 I V G Grp ˙ = 0 G
54 53 simprd I V ˙ = 0 G
55 52 54 eqtrd I V F = 0 G
56 25 50 55 3jca I V F : W Base G a W b W F a + M b = F a + G F b F = 0 G
57 1 frmd0 = 0 M
58 eqid 0 G = 0 G
59 2 22 34 45 57 58 ismhm F M MndHom G M Mnd G Mnd F : W Base G a W b W F a + M b = F a + G F b F = 0 G
60 10 12 56 59 syl21anbrc I V F M MndHom G