| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgpnabl.g |
|
| 2 |
|
frgpnabl.w |
|
| 3 |
|
frgpnabl.r |
|
| 4 |
|
frgpnabl.p |
|
| 5 |
|
frgpnabl.m |
|
| 6 |
|
frgpnabl.t |
|
| 7 |
|
frgpnabl.d |
|
| 8 |
|
frgpnabl.u |
|
| 9 |
|
frgpnabl.i |
|
| 10 |
|
frgpnabl.a |
|
| 11 |
|
frgpnabl.b |
|
| 12 |
|
0ex |
|
| 13 |
12
|
prid1 |
|
| 14 |
|
df2o3 |
|
| 15 |
13 14
|
eleqtrri |
|
| 16 |
|
opelxpi |
|
| 17 |
10 15 16
|
sylancl |
|
| 18 |
|
opelxpi |
|
| 19 |
11 15 18
|
sylancl |
|
| 20 |
17 19
|
s2cld |
|
| 21 |
|
2on |
|
| 22 |
|
xpexg |
|
| 23 |
9 21 22
|
sylancl |
|
| 24 |
|
wrdexg |
|
| 25 |
|
fvi |
|
| 26 |
23 24 25
|
3syl |
|
| 27 |
2 26
|
eqtrid |
|
| 28 |
20 27
|
eleqtrrd |
|
| 29 |
|
1n0 |
|
| 30 |
|
2cn |
|
| 31 |
30
|
addlidi |
|
| 32 |
|
s2len |
|
| 33 |
31 32
|
eqtr4i |
|
| 34 |
2 3 5 6
|
efgtlen |
|
| 35 |
34
|
adantll |
|
| 36 |
33 35
|
eqtrid |
|
| 37 |
36
|
ex |
|
| 38 |
|
0cnd |
|
| 39 |
|
simpr |
|
| 40 |
2
|
efgrcl |
|
| 41 |
40
|
simprd |
|
| 42 |
41
|
adantl |
|
| 43 |
39 42
|
eleqtrd |
|
| 44 |
|
lencl |
|
| 45 |
43 44
|
syl |
|
| 46 |
45
|
nn0cnd |
|
| 47 |
|
2cnd |
|
| 48 |
38 46 47
|
addcan2d |
|
| 49 |
37 48
|
sylibd |
|
| 50 |
2 3 5 6
|
efgtf |
|
| 51 |
50
|
adantl |
|
| 52 |
51
|
simpld |
|
| 53 |
52
|
rneqd |
|
| 54 |
53
|
eleq2d |
|
| 55 |
|
eqid |
|
| 56 |
|
ovex |
|
| 57 |
55 56
|
elrnmpo |
|
| 58 |
|
wrd0 |
|
| 59 |
58
|
a1i |
|
| 60 |
|
simprr |
|
| 61 |
5
|
efgmf |
|
| 62 |
61
|
ffvelcdmi |
|
| 63 |
60 62
|
syl |
|
| 64 |
60 63
|
s2cld |
|
| 65 |
|
ccatidid |
|
| 66 |
65
|
oveq1i |
|
| 67 |
66 65
|
eqtr2i |
|
| 68 |
67
|
a1i |
|
| 69 |
|
simprl |
|
| 70 |
|
hash0 |
|
| 71 |
70
|
oveq2i |
|
| 72 |
69 71
|
eleqtrdi |
|
| 73 |
|
elfz1eq |
|
| 74 |
72 73
|
syl |
|
| 75 |
74 70
|
eqtr4di |
|
| 76 |
70
|
oveq2i |
|
| 77 |
|
0cn |
|
| 78 |
74 77
|
eqeltrdi |
|
| 79 |
78
|
addridd |
|
| 80 |
76 79
|
eqtr2id |
|
| 81 |
59 59 59 64 68 75 80
|
splval2 |
|
| 82 |
|
ccatlid |
|
| 83 |
82
|
oveq1d |
|
| 84 |
|
ccatrid |
|
| 85 |
83 84
|
eqtrd |
|
| 86 |
64 85
|
syl |
|
| 87 |
81 86
|
eqtrd |
|
| 88 |
87
|
eqeq2d |
|
| 89 |
10
|
ad3antrrr |
|
| 90 |
|
1on |
|
| 91 |
90
|
a1i |
|
| 92 |
|
simpr |
|
| 93 |
92
|
fveq1d |
|
| 94 |
|
opex |
|
| 95 |
|
s2fv1 |
|
| 96 |
94 95
|
ax-mp |
|
| 97 |
|
fvex |
|
| 98 |
|
s2fv1 |
|
| 99 |
97 98
|
ax-mp |
|
| 100 |
93 96 99
|
3eqtr3g |
|
| 101 |
92
|
fveq1d |
|
| 102 |
|
opex |
|
| 103 |
|
s2fv0 |
|
| 104 |
102 103
|
ax-mp |
|
| 105 |
|
s2fv0 |
|
| 106 |
105
|
elv |
|
| 107 |
101 104 106
|
3eqtr3g |
|
| 108 |
107
|
fveq2d |
|
| 109 |
5
|
efgmval |
|
| 110 |
89 15 109
|
sylancl |
|
| 111 |
|
df-ov |
|
| 112 |
|
dif0 |
|
| 113 |
112
|
opeq2i |
|
| 114 |
110 111 113
|
3eqtr3g |
|
| 115 |
100 108 114
|
3eqtr2rd |
|
| 116 |
|
opthg |
|
| 117 |
116
|
simplbda |
|
| 118 |
89 91 115 117
|
syl21anc |
|
| 119 |
118
|
ex |
|
| 120 |
88 119
|
sylbid |
|
| 121 |
120
|
rexlimdvva |
|
| 122 |
57 121
|
biimtrid |
|
| 123 |
54 122
|
sylbid |
|
| 124 |
123
|
expimpd |
|
| 125 |
|
hasheq0 |
|
| 126 |
125
|
elv |
|
| 127 |
|
eleq1 |
|
| 128 |
|
fveq2 |
|
| 129 |
128
|
rneqd |
|
| 130 |
129
|
eleq2d |
|
| 131 |
127 130
|
anbi12d |
|
| 132 |
126 131
|
sylbi |
|
| 133 |
132
|
eqcoms |
|
| 134 |
133
|
imbi1d |
|
| 135 |
124 134
|
syl5ibrcom |
|
| 136 |
135
|
com23 |
|
| 137 |
136
|
expdimp |
|
| 138 |
49 137
|
mpdd |
|
| 139 |
138
|
necon3ad |
|
| 140 |
29 139
|
mpi |
|
| 141 |
140
|
nrexdv |
|
| 142 |
|
eliun |
|
| 143 |
141 142
|
sylnibr |
|
| 144 |
28 143
|
eldifd |
|
| 145 |
144 7
|
eleqtrrdi |
|
| 146 |
|
df-s2 |
|
| 147 |
2 3
|
efger |
|
| 148 |
147
|
a1i |
|
| 149 |
148 28
|
erref |
|
| 150 |
146 149
|
eqbrtrrid |
|
| 151 |
146
|
ovexi |
|
| 152 |
|
ovex |
|
| 153 |
151 152
|
elec |
|
| 154 |
150 153
|
sylibr |
|
| 155 |
3 8
|
vrgpval |
|
| 156 |
9 10 155
|
syl2anc |
|
| 157 |
3 8
|
vrgpval |
|
| 158 |
9 11 157
|
syl2anc |
|
| 159 |
156 158
|
oveq12d |
|
| 160 |
17
|
s1cld |
|
| 161 |
160 27
|
eleqtrrd |
|
| 162 |
19
|
s1cld |
|
| 163 |
162 27
|
eleqtrrd |
|
| 164 |
2 1 3 4
|
frgpadd |
|
| 165 |
161 163 164
|
syl2anc |
|
| 166 |
159 165
|
eqtrd |
|
| 167 |
154 166
|
eleqtrrd |
|
| 168 |
145 167
|
elind |
|