Metamath Proof Explorer


Theorem frgpnabllem2

Description: Lemma for frgpnabl . (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 25-Apr-2024)

Ref Expression
Hypotheses frgpnabl.g G = freeGrp I
frgpnabl.w W = I Word I × 2 𝑜
frgpnabl.r ˙ = ~ FG I
frgpnabl.p + ˙ = + G
frgpnabl.m M = y I , z 2 𝑜 y 1 𝑜 z
frgpnabl.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
frgpnabl.d D = W x W ran T x
frgpnabl.u U = var FGrp I
frgpnabl.i φ I V
frgpnabl.a φ A I
frgpnabl.b φ B I
frgpnabl.n φ U A + ˙ U B = U B + ˙ U A
Assertion frgpnabllem2 φ A = B

Proof

Step Hyp Ref Expression
1 frgpnabl.g G = freeGrp I
2 frgpnabl.w W = I Word I × 2 𝑜
3 frgpnabl.r ˙ = ~ FG I
4 frgpnabl.p + ˙ = + G
5 frgpnabl.m M = y I , z 2 𝑜 y 1 𝑜 z
6 frgpnabl.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
7 frgpnabl.d D = W x W ran T x
8 frgpnabl.u U = var FGrp I
9 frgpnabl.i φ I V
10 frgpnabl.a φ A I
11 frgpnabl.b φ B I
12 frgpnabl.n φ U A + ˙ U B = U B + ˙ U A
13 0ex V
14 13 a1i φ V
15 difss W x W ran T x W
16 7 15 eqsstri D W
17 1 2 3 4 5 6 7 8 9 11 10 frgpnabllem1 φ ⟨“ B A ”⟩ D U B + ˙ U A
18 17 elin1d φ ⟨“ B A ”⟩ D
19 16 18 sselid φ ⟨“ B A ”⟩ W
20 eqid m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1 = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
21 2 3 5 6 7 20 efgredeu ⟨“ B A ”⟩ W ∃! d D d ˙ ⟨“ B A ”⟩
22 reurmo ∃! d D d ˙ ⟨“ B A ”⟩ * d D d ˙ ⟨“ B A ”⟩
23 19 21 22 3syl φ * d D d ˙ ⟨“ B A ”⟩
24 1 2 3 4 5 6 7 8 9 10 11 frgpnabllem1 φ ⟨“ A B ”⟩ D U A + ˙ U B
25 24 elin1d φ ⟨“ A B ”⟩ D
26 2 3 efger ˙ Er W
27 26 a1i φ ˙ Er W
28 1 frgpgrp I V G Grp
29 9 28 syl φ G Grp
30 eqid Base G = Base G
31 3 8 1 30 vrgpf I V U : I Base G
32 9 31 syl φ U : I Base G
33 32 10 ffvelrnd φ U A Base G
34 32 11 ffvelrnd φ U B Base G
35 30 4 grpcl G Grp U A Base G U B Base G U A + ˙ U B Base G
36 29 33 34 35 syl3anc φ U A + ˙ U B Base G
37 eqid freeMnd I × 2 𝑜 = freeMnd I × 2 𝑜
38 1 37 3 frgpval I V G = freeMnd I × 2 𝑜 / 𝑠 ˙
39 9 38 syl φ G = freeMnd I × 2 𝑜 / 𝑠 ˙
40 2on 2 𝑜 On
41 xpexg I V 2 𝑜 On I × 2 𝑜 V
42 9 40 41 sylancl φ I × 2 𝑜 V
43 wrdexg I × 2 𝑜 V Word I × 2 𝑜 V
44 fvi Word I × 2 𝑜 V I Word I × 2 𝑜 = Word I × 2 𝑜
45 42 43 44 3syl φ I Word I × 2 𝑜 = Word I × 2 𝑜
46 2 45 eqtrid φ W = Word I × 2 𝑜
47 eqid Base freeMnd I × 2 𝑜 = Base freeMnd I × 2 𝑜
48 37 47 frmdbas I × 2 𝑜 V Base freeMnd I × 2 𝑜 = Word I × 2 𝑜
49 42 48 syl φ Base freeMnd I × 2 𝑜 = Word I × 2 𝑜
50 46 49 eqtr4d φ W = Base freeMnd I × 2 𝑜
51 3 fvexi ˙ V
52 51 a1i φ ˙ V
53 fvexd φ freeMnd I × 2 𝑜 V
54 39 50 52 53 qusbas φ W / ˙ = Base G
55 36 54 eleqtrrd φ U A + ˙ U B W / ˙
56 24 elin2d φ ⟨“ A B ”⟩ U A + ˙ U B
57 qsel ˙ Er W U A + ˙ U B W / ˙ ⟨“ A B ”⟩ U A + ˙ U B U A + ˙ U B = ⟨“ A B ”⟩ ˙
58 27 55 56 57 syl3anc φ U A + ˙ U B = ⟨“ A B ”⟩ ˙
59 17 elin2d φ ⟨“ B A ”⟩ U B + ˙ U A
60 59 12 eleqtrrd φ ⟨“ B A ”⟩ U A + ˙ U B
61 qsel ˙ Er W U A + ˙ U B W / ˙ ⟨“ B A ”⟩ U A + ˙ U B U A + ˙ U B = ⟨“ B A ”⟩ ˙
62 27 55 60 61 syl3anc φ U A + ˙ U B = ⟨“ B A ”⟩ ˙
63 58 62 eqtr3d φ ⟨“ A B ”⟩ ˙ = ⟨“ B A ”⟩ ˙
64 16 25 sselid φ ⟨“ A B ”⟩ W
65 27 64 erth φ ⟨“ A B ”⟩ ˙ ⟨“ B A ”⟩ ⟨“ A B ”⟩ ˙ = ⟨“ B A ”⟩ ˙
66 63 65 mpbird φ ⟨“ A B ”⟩ ˙ ⟨“ B A ”⟩
67 27 19 erref φ ⟨“ B A ”⟩ ˙ ⟨“ B A ”⟩
68 breq1 d = ⟨“ A B ”⟩ d ˙ ⟨“ B A ”⟩ ⟨“ A B ”⟩ ˙ ⟨“ B A ”⟩
69 breq1 d = ⟨“ B A ”⟩ d ˙ ⟨“ B A ”⟩ ⟨“ B A ”⟩ ˙ ⟨“ B A ”⟩
70 68 69 rmoi * d D d ˙ ⟨“ B A ”⟩ ⟨“ A B ”⟩ D ⟨“ A B ”⟩ ˙ ⟨“ B A ”⟩ ⟨“ B A ”⟩ D ⟨“ B A ”⟩ ˙ ⟨“ B A ”⟩ ⟨“ A B ”⟩ = ⟨“ B A ”⟩
71 23 25 66 18 67 70 syl122anc φ ⟨“ A B ”⟩ = ⟨“ B A ”⟩
72 71 fveq1d φ ⟨“ A B ”⟩ 0 = ⟨“ B A ”⟩ 0
73 opex A V
74 s2fv0 A V ⟨“ A B ”⟩ 0 = A
75 73 74 ax-mp ⟨“ A B ”⟩ 0 = A
76 opex B V
77 s2fv0 B V ⟨“ B A ”⟩ 0 = B
78 76 77 ax-mp ⟨“ B A ”⟩ 0 = B
79 72 75 78 3eqtr3g φ A = B
80 opthg A I V A = B A = B =
81 80 simprbda A I V A = B A = B
82 10 14 79 81 syl21anc φ A = B