Metamath Proof Explorer


Theorem frgpup1

Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 28-Feb-2016)

Ref Expression
Hypotheses frgpup.b B = Base H
frgpup.n N = inv g H
frgpup.t T = y I , z 2 𝑜 if z = F y N F y
frgpup.h φ H Grp
frgpup.i φ I V
frgpup.a φ F : I B
frgpup.w W = I Word I × 2 𝑜
frgpup.r ˙ = ~ FG I
frgpup.g G = freeGrp I
frgpup.x X = Base G
frgpup.e E = ran g W g ˙ H T g
Assertion frgpup1 φ E G GrpHom H

Proof

Step Hyp Ref Expression
1 frgpup.b B = Base H
2 frgpup.n N = inv g H
3 frgpup.t T = y I , z 2 𝑜 if z = F y N F y
4 frgpup.h φ H Grp
5 frgpup.i φ I V
6 frgpup.a φ F : I B
7 frgpup.w W = I Word I × 2 𝑜
8 frgpup.r ˙ = ~ FG I
9 frgpup.g G = freeGrp I
10 frgpup.x X = Base G
11 frgpup.e E = ran g W g ˙ H T g
12 eqid + G = + G
13 eqid + H = + H
14 9 frgpgrp I V G Grp
15 5 14 syl φ G Grp
16 1 2 3 4 5 6 7 8 9 10 11 frgpupf φ E : X B
17 eqid freeMnd I × 2 𝑜 = freeMnd I × 2 𝑜
18 9 17 8 frgpval I V G = freeMnd I × 2 𝑜 / 𝑠 ˙
19 5 18 syl φ G = freeMnd I × 2 𝑜 / 𝑠 ˙
20 2on 2 𝑜 On
21 xpexg I V 2 𝑜 On I × 2 𝑜 V
22 5 20 21 sylancl φ I × 2 𝑜 V
23 wrdexg I × 2 𝑜 V Word I × 2 𝑜 V
24 fvi Word I × 2 𝑜 V I Word I × 2 𝑜 = Word I × 2 𝑜
25 22 23 24 3syl φ I Word I × 2 𝑜 = Word I × 2 𝑜
26 7 25 syl5eq φ W = Word I × 2 𝑜
27 eqid Base freeMnd I × 2 𝑜 = Base freeMnd I × 2 𝑜
28 17 27 frmdbas I × 2 𝑜 V Base freeMnd I × 2 𝑜 = Word I × 2 𝑜
29 22 28 syl φ Base freeMnd I × 2 𝑜 = Word I × 2 𝑜
30 26 29 eqtr4d φ W = Base freeMnd I × 2 𝑜
31 8 fvexi ˙ V
32 31 a1i φ ˙ V
33 fvexd φ freeMnd I × 2 𝑜 V
34 19 30 32 33 qusbas φ W / ˙ = Base G
35 34 10 syl6reqr φ X = W / ˙
36 eqimss X = W / ˙ X W / ˙
37 35 36 syl φ X W / ˙
38 37 adantr φ a X X W / ˙
39 38 sselda φ a X c X c W / ˙
40 eqid W / ˙ = W / ˙
41 oveq2 u ˙ = c a + G u ˙ = a + G c
42 41 fveq2d u ˙ = c E a + G u ˙ = E a + G c
43 fveq2 u ˙ = c E u ˙ = E c
44 43 oveq2d u ˙ = c E a + H E u ˙ = E a + H E c
45 42 44 eqeq12d u ˙ = c E a + G u ˙ = E a + H E u ˙ E a + G c = E a + H E c
46 37 sselda φ a X a W / ˙
47 46 adantlr φ u W a X a W / ˙
48 fvoveq1 t ˙ = a E t ˙ + G u ˙ = E a + G u ˙
49 fveq2 t ˙ = a E t ˙ = E a
50 49 oveq1d t ˙ = a E t ˙ + H E u ˙ = E a + H E u ˙
51 48 50 eqeq12d t ˙ = a E t ˙ + G u ˙ = E t ˙ + H E u ˙ E a + G u ˙ = E a + H E u ˙
52 fviss I Word I × 2 𝑜 Word I × 2 𝑜
53 7 52 eqsstri W Word I × 2 𝑜
54 53 sseli t W t Word I × 2 𝑜
55 53 sseli u W u Word I × 2 𝑜
56 ccatcl t Word I × 2 𝑜 u Word I × 2 𝑜 t ++ u Word I × 2 𝑜
57 54 55 56 syl2an t W u W t ++ u Word I × 2 𝑜
58 7 efgrcl t W I V W = Word I × 2 𝑜
59 58 adantr t W u W I V W = Word I × 2 𝑜
60 59 simprd t W u W W = Word I × 2 𝑜
61 57 60 eleqtrrd t W u W t ++ u W
62 1 2 3 4 5 6 7 8 9 10 11 frgpupval φ t ++ u W E t ++ u ˙ = H T t ++ u
63 61 62 sylan2 φ t W u W E t ++ u ˙ = H T t ++ u
64 54 ad2antrl φ t W u W t Word I × 2 𝑜
65 55 ad2antll φ t W u W u Word I × 2 𝑜
66 1 2 3 4 5 6 frgpuptf φ T : I × 2 𝑜 B
67 66 adantr φ t W u W T : I × 2 𝑜 B
68 ccatco t Word I × 2 𝑜 u Word I × 2 𝑜 T : I × 2 𝑜 B T t ++ u = T t ++ T u
69 64 65 67 68 syl3anc φ t W u W T t ++ u = T t ++ T u
70 69 oveq2d φ t W u W H T t ++ u = H T t ++ T u
71 grpmnd H Grp H Mnd
72 4 71 syl φ H Mnd
73 72 adantr φ t W u W H Mnd
74 wrdco t Word I × 2 𝑜 T : I × 2 𝑜 B T t Word B
75 54 66 74 syl2anr φ t W T t Word B
76 75 adantrr φ t W u W T t Word B
77 wrdco u Word I × 2 𝑜 T : I × 2 𝑜 B T u Word B
78 65 67 77 syl2anc φ t W u W T u Word B
79 1 13 gsumccat H Mnd T t Word B T u Word B H T t ++ T u = H T t + H H T u
80 73 76 78 79 syl3anc φ t W u W H T t ++ T u = H T t + H H T u
81 63 70 80 3eqtrd φ t W u W E t ++ u ˙ = H T t + H H T u
82 7 9 8 12 frgpadd t W u W t ˙ + G u ˙ = t ++ u ˙
83 82 adantl φ t W u W t ˙ + G u ˙ = t ++ u ˙
84 83 fveq2d φ t W u W E t ˙ + G u ˙ = E t ++ u ˙
85 1 2 3 4 5 6 7 8 9 10 11 frgpupval φ t W E t ˙ = H T t
86 85 adantrr φ t W u W E t ˙ = H T t
87 1 2 3 4 5 6 7 8 9 10 11 frgpupval φ u W E u ˙ = H T u
88 87 adantrl φ t W u W E u ˙ = H T u
89 86 88 oveq12d φ t W u W E t ˙ + H E u ˙ = H T t + H H T u
90 81 84 89 3eqtr4d φ t W u W E t ˙ + G u ˙ = E t ˙ + H E u ˙
91 90 anass1rs φ u W t W E t ˙ + G u ˙ = E t ˙ + H E u ˙
92 40 51 91 ectocld φ u W a W / ˙ E a + G u ˙ = E a + H E u ˙
93 47 92 syldan φ u W a X E a + G u ˙ = E a + H E u ˙
94 93 an32s φ a X u W E a + G u ˙ = E a + H E u ˙
95 40 45 94 ectocld φ a X c W / ˙ E a + G c = E a + H E c
96 39 95 syldan φ a X c X E a + G c = E a + H E c
97 96 anasss φ a X c X E a + G c = E a + H E c
98 10 1 12 13 15 4 16 97 isghmd φ E G GrpHom H