| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgpup3.g |
|
| 2 |
|
frgpup3.b |
|
| 3 |
|
frgpup3.u |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
simp1 |
|
| 7 |
|
simp2 |
|
| 8 |
|
simp3 |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
2 4 5 6 7 8 9 10 1 11 12
|
frgpup1 |
|
| 14 |
6
|
adantr |
|
| 15 |
7
|
adantr |
|
| 16 |
8
|
adantr |
|
| 17 |
|
simpr |
|
| 18 |
2 4 5 14 15 16 9 10 1 11 12 3 17
|
frgpup2 |
|
| 19 |
18
|
mpteq2dva |
|
| 20 |
11 2
|
ghmf |
|
| 21 |
13 20
|
syl |
|
| 22 |
10 3 1 11
|
vrgpf |
|
| 23 |
7 22
|
syl |
|
| 24 |
|
fcompt |
|
| 25 |
21 23 24
|
syl2anc |
|
| 26 |
8
|
feqmptd |
|
| 27 |
19 25 26
|
3eqtr4d |
|
| 28 |
6
|
adantr |
|
| 29 |
7
|
adantr |
|
| 30 |
8
|
adantr |
|
| 31 |
|
simprl |
|
| 32 |
|
simprr |
|
| 33 |
2 4 5 28 29 30 9 10 1 11 12 3 31 32
|
frgpup3lem |
|
| 34 |
33
|
expr |
|
| 35 |
34
|
ralrimiva |
|
| 36 |
|
coeq1 |
|
| 37 |
36
|
eqeq1d |
|
| 38 |
37
|
eqreu |
|
| 39 |
13 27 35 38
|
syl3anc |
|