Metamath Proof Explorer


Theorem frgpup3lem

Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 28-Feb-2016)

Ref Expression
Hypotheses frgpup.b B = Base H
frgpup.n N = inv g H
frgpup.t T = y I , z 2 𝑜 if z = F y N F y
frgpup.h φ H Grp
frgpup.i φ I V
frgpup.a φ F : I B
frgpup.w W = I Word I × 2 𝑜
frgpup.r ˙ = ~ FG I
frgpup.g G = freeGrp I
frgpup.x X = Base G
frgpup.e E = ran g W g ˙ H T g
frgpup.u U = var FGrp I
frgpup3.k φ K G GrpHom H
frgpup3.e φ K U = F
Assertion frgpup3lem φ K = E

Proof

Step Hyp Ref Expression
1 frgpup.b B = Base H
2 frgpup.n N = inv g H
3 frgpup.t T = y I , z 2 𝑜 if z = F y N F y
4 frgpup.h φ H Grp
5 frgpup.i φ I V
6 frgpup.a φ F : I B
7 frgpup.w W = I Word I × 2 𝑜
8 frgpup.r ˙ = ~ FG I
9 frgpup.g G = freeGrp I
10 frgpup.x X = Base G
11 frgpup.e E = ran g W g ˙ H T g
12 frgpup.u U = var FGrp I
13 frgpup3.k φ K G GrpHom H
14 frgpup3.e φ K U = F
15 10 1 ghmf K G GrpHom H K : X B
16 ffn K : X B K Fn X
17 13 15 16 3syl φ K Fn X
18 1 2 3 4 5 6 7 8 9 10 11 frgpup1 φ E G GrpHom H
19 10 1 ghmf E G GrpHom H E : X B
20 ffn E : X B E Fn X
21 18 19 20 3syl φ E Fn X
22 eqid freeMnd I × 2 𝑜 = freeMnd I × 2 𝑜
23 9 22 8 frgpval I V G = freeMnd I × 2 𝑜 / 𝑠 ˙
24 5 23 syl φ G = freeMnd I × 2 𝑜 / 𝑠 ˙
25 2on 2 𝑜 On
26 xpexg I V 2 𝑜 On I × 2 𝑜 V
27 5 25 26 sylancl φ I × 2 𝑜 V
28 wrdexg I × 2 𝑜 V Word I × 2 𝑜 V
29 fvi Word I × 2 𝑜 V I Word I × 2 𝑜 = Word I × 2 𝑜
30 27 28 29 3syl φ I Word I × 2 𝑜 = Word I × 2 𝑜
31 7 30 eqtrid φ W = Word I × 2 𝑜
32 eqid Base freeMnd I × 2 𝑜 = Base freeMnd I × 2 𝑜
33 22 32 frmdbas I × 2 𝑜 V Base freeMnd I × 2 𝑜 = Word I × 2 𝑜
34 27 33 syl φ Base freeMnd I × 2 𝑜 = Word I × 2 𝑜
35 31 34 eqtr4d φ W = Base freeMnd I × 2 𝑜
36 8 fvexi ˙ V
37 36 a1i φ ˙ V
38 fvexd φ freeMnd I × 2 𝑜 V
39 24 35 37 38 qusbas φ W / ˙ = Base G
40 10 39 eqtr4id φ X = W / ˙
41 eqimss X = W / ˙ X W / ˙
42 40 41 syl φ X W / ˙
43 42 sselda φ a X a W / ˙
44 eqid W / ˙ = W / ˙
45 fveq2 t ˙ = a K t ˙ = K a
46 fveq2 t ˙ = a E t ˙ = E a
47 45 46 eqeq12d t ˙ = a K t ˙ = E t ˙ K a = E a
48 simpr φ t W t W
49 31 adantr φ t W W = Word I × 2 𝑜
50 48 49 eleqtrd φ t W t Word I × 2 𝑜
51 wrdf t Word I × 2 𝑜 t : 0 ..^ t I × 2 𝑜
52 50 51 syl φ t W t : 0 ..^ t I × 2 𝑜
53 52 ffvelrnda φ t W n 0 ..^ t t n I × 2 𝑜
54 elxp2 t n I × 2 𝑜 i I j 2 𝑜 t n = i j
55 53 54 sylib φ t W n 0 ..^ t i I j 2 𝑜 t n = i j
56 fveq2 y = i F y = F i
57 56 fveq2d y = i N F y = N F i
58 56 57 ifeq12d y = i if z = F y N F y = if z = F i N F i
59 eqeq1 z = j z = j =
60 59 ifbid z = j if z = F i N F i = if j = F i N F i
61 fvex F i V
62 fvex N F i V
63 61 62 ifex if j = F i N F i V
64 58 60 3 63 ovmpo i I j 2 𝑜 i T j = if j = F i N F i
65 64 adantl φ i I j 2 𝑜 i T j = if j = F i N F i
66 elpri j 1 𝑜 j = j = 1 𝑜
67 df2o3 2 𝑜 = 1 𝑜
68 66 67 eleq2s j 2 𝑜 j = j = 1 𝑜
69 14 adantr φ i I K U = F
70 69 fveq1d φ i I K U i = F i
71 8 12 9 10 vrgpf I V U : I X
72 5 71 syl φ U : I X
73 fvco3 U : I X i I K U i = K U i
74 72 73 sylan φ i I K U i = K U i
75 70 74 eqtr3d φ i I F i = K U i
76 75 adantr φ i I j = F i = K U i
77 iftrue j = if j = F i N F i = F i
78 77 adantl φ i I j = if j = F i N F i = F i
79 simpr φ i I j = j =
80 79 opeq2d φ i I j = i j = i
81 80 s1eqd φ i I j = ⟨“ i j ”⟩ = ⟨“ i ”⟩
82 81 eceq1d φ i I j = ⟨“ i j ”⟩ ˙ = ⟨“ i ”⟩ ˙
83 8 12 vrgpval I V i I U i = ⟨“ i ”⟩ ˙
84 5 83 sylan φ i I U i = ⟨“ i ”⟩ ˙
85 84 adantr φ i I j = U i = ⟨“ i ”⟩ ˙
86 82 85 eqtr4d φ i I j = ⟨“ i j ”⟩ ˙ = U i
87 86 fveq2d φ i I j = K ⟨“ i j ”⟩ ˙ = K U i
88 76 78 87 3eqtr4d φ i I j = if j = F i N F i = K ⟨“ i j ”⟩ ˙
89 75 fveq2d φ i I N F i = N K U i
90 72 ffvelrnda φ i I U i X
91 eqid inv g G = inv g G
92 10 91 2 ghminv K G GrpHom H U i X K inv g G U i = N K U i
93 13 90 92 syl2an2r φ i I K inv g G U i = N K U i
94 89 93 eqtr4d φ i I N F i = K inv g G U i
95 94 adantr φ i I j = 1 𝑜 N F i = K inv g G U i
96 1n0 1 𝑜
97 simpr φ i I j = 1 𝑜 j = 1 𝑜
98 97 neeq1d φ i I j = 1 𝑜 j 1 𝑜
99 96 98 mpbiri φ i I j = 1 𝑜 j
100 ifnefalse j if j = F i N F i = N F i
101 99 100 syl φ i I j = 1 𝑜 if j = F i N F i = N F i
102 97 opeq2d φ i I j = 1 𝑜 i j = i 1 𝑜
103 102 s1eqd φ i I j = 1 𝑜 ⟨“ i j ”⟩ = ⟨“ i 1 𝑜 ”⟩
104 103 eceq1d φ i I j = 1 𝑜 ⟨“ i j ”⟩ ˙ = ⟨“ i 1 𝑜 ”⟩ ˙
105 8 12 9 91 vrgpinv I V i I inv g G U i = ⟨“ i 1 𝑜 ”⟩ ˙
106 5 105 sylan φ i I inv g G U i = ⟨“ i 1 𝑜 ”⟩ ˙
107 106 adantr φ i I j = 1 𝑜 inv g G U i = ⟨“ i 1 𝑜 ”⟩ ˙
108 104 107 eqtr4d φ i I j = 1 𝑜 ⟨“ i j ”⟩ ˙ = inv g G U i
109 108 fveq2d φ i I j = 1 𝑜 K ⟨“ i j ”⟩ ˙ = K inv g G U i
110 95 101 109 3eqtr4d φ i I j = 1 𝑜 if j = F i N F i = K ⟨“ i j ”⟩ ˙
111 88 110 jaodan φ i I j = j = 1 𝑜 if j = F i N F i = K ⟨“ i j ”⟩ ˙
112 68 111 sylan2 φ i I j 2 𝑜 if j = F i N F i = K ⟨“ i j ”⟩ ˙
113 112 anasss φ i I j 2 𝑜 if j = F i N F i = K ⟨“ i j ”⟩ ˙
114 65 113 eqtrd φ i I j 2 𝑜 i T j = K ⟨“ i j ”⟩ ˙
115 fveq2 t n = i j T t n = T i j
116 df-ov i T j = T i j
117 115 116 eqtr4di t n = i j T t n = i T j
118 s1eq t n = i j ⟨“ t n ”⟩ = ⟨“ i j ”⟩
119 118 eceq1d t n = i j ⟨“ t n ”⟩ ˙ = ⟨“ i j ”⟩ ˙
120 119 fveq2d t n = i j K ⟨“ t n ”⟩ ˙ = K ⟨“ i j ”⟩ ˙
121 117 120 eqeq12d t n = i j T t n = K ⟨“ t n ”⟩ ˙ i T j = K ⟨“ i j ”⟩ ˙
122 114 121 syl5ibrcom φ i I j 2 𝑜 t n = i j T t n = K ⟨“ t n ”⟩ ˙
123 122 rexlimdvva φ i I j 2 𝑜 t n = i j T t n = K ⟨“ t n ”⟩ ˙
124 123 ad2antrr φ t W n 0 ..^ t i I j 2 𝑜 t n = i j T t n = K ⟨“ t n ”⟩ ˙
125 55 124 mpd φ t W n 0 ..^ t T t n = K ⟨“ t n ”⟩ ˙
126 125 mpteq2dva φ t W n 0 ..^ t T t n = n 0 ..^ t K ⟨“ t n ”⟩ ˙
127 1 2 3 4 5 6 frgpuptf φ T : I × 2 𝑜 B
128 fcompt T : I × 2 𝑜 B t : 0 ..^ t I × 2 𝑜 T t = n 0 ..^ t T t n
129 127 52 128 syl2an2r φ t W T t = n 0 ..^ t T t n
130 53 s1cld φ t W n 0 ..^ t ⟨“ t n ”⟩ Word I × 2 𝑜
131 31 ad2antrr φ t W n 0 ..^ t W = Word I × 2 𝑜
132 130 131 eleqtrrd φ t W n 0 ..^ t ⟨“ t n ”⟩ W
133 9 8 7 10 frgpeccl ⟨“ t n ”⟩ W ⟨“ t n ”⟩ ˙ X
134 132 133 syl φ t W n 0 ..^ t ⟨“ t n ”⟩ ˙ X
135 52 feqmptd φ t W t = n 0 ..^ t t n
136 5 adantr φ t W I V
137 136 25 26 sylancl φ t W I × 2 𝑜 V
138 eqid var FMnd I × 2 𝑜 = var FMnd I × 2 𝑜
139 138 vrmdfval I × 2 𝑜 V var FMnd I × 2 𝑜 = w I × 2 𝑜 ⟨“ w ”⟩
140 137 139 syl φ t W var FMnd I × 2 𝑜 = w I × 2 𝑜 ⟨“ w ”⟩
141 s1eq w = t n ⟨“ w ”⟩ = ⟨“ t n ”⟩
142 53 135 140 141 fmptco φ t W var FMnd I × 2 𝑜 t = n 0 ..^ t ⟨“ t n ”⟩
143 eqidd φ t W w W w ˙ = w W w ˙
144 eceq1 w = ⟨“ t n ”⟩ w ˙ = ⟨“ t n ”⟩ ˙
145 132 142 143 144 fmptco φ t W w W w ˙ var FMnd I × 2 𝑜 t = n 0 ..^ t ⟨“ t n ”⟩ ˙
146 13 adantr φ t W K G GrpHom H
147 146 15 syl φ t W K : X B
148 147 feqmptd φ t W K = w X K w
149 fveq2 w = ⟨“ t n ”⟩ ˙ K w = K ⟨“ t n ”⟩ ˙
150 134 145 148 149 fmptco φ t W K w W w ˙ var FMnd I × 2 𝑜 t = n 0 ..^ t K ⟨“ t n ”⟩ ˙
151 126 129 150 3eqtr4d φ t W T t = K w W w ˙ var FMnd I × 2 𝑜 t
152 151 oveq2d φ t W H T t = H K w W w ˙ var FMnd I × 2 𝑜 t
153 1 2 3 4 5 6 7 8 9 10 11 frgpupval φ t W E t ˙ = H T t
154 ghmmhm K G GrpHom H K G MndHom H
155 146 154 syl φ t W K G MndHom H
156 138 vrmdf I × 2 𝑜 V var FMnd I × 2 𝑜 : I × 2 𝑜 Word I × 2 𝑜
157 137 156 syl φ t W var FMnd I × 2 𝑜 : I × 2 𝑜 Word I × 2 𝑜
158 49 feq3d φ t W var FMnd I × 2 𝑜 : I × 2 𝑜 W var FMnd I × 2 𝑜 : I × 2 𝑜 Word I × 2 𝑜
159 157 158 mpbird φ t W var FMnd I × 2 𝑜 : I × 2 𝑜 W
160 wrdco t Word I × 2 𝑜 var FMnd I × 2 𝑜 : I × 2 𝑜 W var FMnd I × 2 𝑜 t Word W
161 50 159 160 syl2anc φ t W var FMnd I × 2 𝑜 t Word W
162 35 adantr φ t W W = Base freeMnd I × 2 𝑜
163 162 mpteq1d φ t W w W w ˙ = w Base freeMnd I × 2 𝑜 w ˙
164 eqid w Base freeMnd I × 2 𝑜 w ˙ = w Base freeMnd I × 2 𝑜 w ˙
165 22 32 9 8 164 frgpmhm I V w Base freeMnd I × 2 𝑜 w ˙ freeMnd I × 2 𝑜 MndHom G
166 136 165 syl φ t W w Base freeMnd I × 2 𝑜 w ˙ freeMnd I × 2 𝑜 MndHom G
167 163 166 eqeltrd φ t W w W w ˙ freeMnd I × 2 𝑜 MndHom G
168 32 10 mhmf w W w ˙ freeMnd I × 2 𝑜 MndHom G w W w ˙ : Base freeMnd I × 2 𝑜 X
169 167 168 syl φ t W w W w ˙ : Base freeMnd I × 2 𝑜 X
170 162 feq2d φ t W w W w ˙ : W X w W w ˙ : Base freeMnd I × 2 𝑜 X
171 169 170 mpbird φ t W w W w ˙ : W X
172 wrdco var FMnd I × 2 𝑜 t Word W w W w ˙ : W X w W w ˙ var FMnd I × 2 𝑜 t Word X
173 161 171 172 syl2anc φ t W w W w ˙ var FMnd I × 2 𝑜 t Word X
174 10 gsumwmhm K G MndHom H w W w ˙ var FMnd I × 2 𝑜 t Word X K G w W w ˙ var FMnd I × 2 𝑜 t = H K w W w ˙ var FMnd I × 2 𝑜 t
175 155 173 174 syl2anc φ t W K G w W w ˙ var FMnd I × 2 𝑜 t = H K w W w ˙ var FMnd I × 2 𝑜 t
176 152 153 175 3eqtr4d φ t W E t ˙ = K G w W w ˙ var FMnd I × 2 𝑜 t
177 22 138 frmdgsum I × 2 𝑜 V t Word I × 2 𝑜 freeMnd I × 2 𝑜 var FMnd I × 2 𝑜 t = t
178 27 50 177 syl2an2r φ t W freeMnd I × 2 𝑜 var FMnd I × 2 𝑜 t = t
179 178 fveq2d φ t W w W w ˙ freeMnd I × 2 𝑜 var FMnd I × 2 𝑜 t = w W w ˙ t
180 wrdco t Word I × 2 𝑜 var FMnd I × 2 𝑜 : I × 2 𝑜 Word I × 2 𝑜 var FMnd I × 2 𝑜 t Word Word I × 2 𝑜
181 50 157 180 syl2anc φ t W var FMnd I × 2 𝑜 t Word Word I × 2 𝑜
182 34 adantr φ t W Base freeMnd I × 2 𝑜 = Word I × 2 𝑜
183 wrdeq Base freeMnd I × 2 𝑜 = Word I × 2 𝑜 Word Base freeMnd I × 2 𝑜 = Word Word I × 2 𝑜
184 182 183 syl φ t W Word Base freeMnd I × 2 𝑜 = Word Word I × 2 𝑜
185 181 184 eleqtrrd φ t W var FMnd I × 2 𝑜 t Word Base freeMnd I × 2 𝑜
186 32 gsumwmhm w W w ˙ freeMnd I × 2 𝑜 MndHom G var FMnd I × 2 𝑜 t Word Base freeMnd I × 2 𝑜 w W w ˙ freeMnd I × 2 𝑜 var FMnd I × 2 𝑜 t = G w W w ˙ var FMnd I × 2 𝑜 t
187 167 185 186 syl2anc φ t W w W w ˙ freeMnd I × 2 𝑜 var FMnd I × 2 𝑜 t = G w W w ˙ var FMnd I × 2 𝑜 t
188 7 8 efger ˙ Er W
189 188 a1i φ t W ˙ Er W
190 7 fvexi W V
191 190 a1i φ t W W V
192 eqid w W w ˙ = w W w ˙
193 189 191 192 divsfval φ t W w W w ˙ t = t ˙
194 179 187 193 3eqtr3d φ t W G w W w ˙ var FMnd I × 2 𝑜 t = t ˙
195 194 fveq2d φ t W K G w W w ˙ var FMnd I × 2 𝑜 t = K t ˙
196 176 195 eqtr2d φ t W K t ˙ = E t ˙
197 44 47 196 ectocld φ a W / ˙ K a = E a
198 43 197 syldan φ a X K a = E a
199 17 21 198 eqfnfvd φ K = E