Metamath Proof Explorer


Theorem frgpuplem

Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses frgpup.b B = Base H
frgpup.n N = inv g H
frgpup.t T = y I , z 2 𝑜 if z = F y N F y
frgpup.h φ H Grp
frgpup.i φ I V
frgpup.a φ F : I B
frgpup.w W = I Word I × 2 𝑜
frgpup.r ˙ = ~ FG I
Assertion frgpuplem φ A ˙ C H T A = H T C

Proof

Step Hyp Ref Expression
1 frgpup.b B = Base H
2 frgpup.n N = inv g H
3 frgpup.t T = y I , z 2 𝑜 if z = F y N F y
4 frgpup.h φ H Grp
5 frgpup.i φ I V
6 frgpup.a φ F : I B
7 frgpup.w W = I Word I × 2 𝑜
8 frgpup.r ˙ = ~ FG I
9 7 8 efgval ˙ = r | r Er W x W n 0 x a I b 2 𝑜 x r x splice n n ⟨“ a b a 1 𝑜 b ”⟩
10 coeq2 u = v T u = T v
11 10 oveq2d u = v H T u = H T v
12 eqid u v | H T u = H T v = u v | H T u = H T v
13 11 12 eqer u v | H T u = H T v Er V
14 13 a1i φ u v | H T u = H T v Er V
15 ssv W V
16 15 a1i φ W V
17 14 16 erinxp φ u v | H T u = H T v W × W Er W
18 df-xp W × W = u v | u W v W
19 18 ineq1i W × W u v | H T u = H T v = u v | u W v W u v | H T u = H T v
20 incom W × W u v | H T u = H T v = u v | H T u = H T v W × W
21 inopab u v | u W v W u v | H T u = H T v = u v | u W v W H T u = H T v
22 19 20 21 3eqtr3i u v | H T u = H T v W × W = u v | u W v W H T u = H T v
23 vex u V
24 vex v V
25 23 24 prss u W v W u v W
26 25 anbi1i u W v W H T u = H T v u v W H T u = H T v
27 26 opabbii u v | u W v W H T u = H T v = u v | u v W H T u = H T v
28 22 27 eqtri u v | H T u = H T v W × W = u v | u v W H T u = H T v
29 ereq1 u v | H T u = H T v W × W = u v | u v W H T u = H T v u v | H T u = H T v W × W Er W u v | u v W H T u = H T v Er W
30 28 29 ax-mp u v | H T u = H T v W × W Er W u v | u v W H T u = H T v Er W
31 17 30 sylib φ u v | u v W H T u = H T v Er W
32 simplrl φ x W n 0 x a I b 2 𝑜 x W
33 fviss I Word I × 2 𝑜 Word I × 2 𝑜
34 7 33 eqsstri W Word I × 2 𝑜
35 34 32 sselid φ x W n 0 x a I b 2 𝑜 x Word I × 2 𝑜
36 opelxpi a I b 2 𝑜 a b I × 2 𝑜
37 36 adantl φ x W n 0 x a I b 2 𝑜 a b I × 2 𝑜
38 simprl φ x W n 0 x a I b 2 𝑜 a I
39 2oconcl b 2 𝑜 1 𝑜 b 2 𝑜
40 39 ad2antll φ x W n 0 x a I b 2 𝑜 1 𝑜 b 2 𝑜
41 38 40 opelxpd φ x W n 0 x a I b 2 𝑜 a 1 𝑜 b I × 2 𝑜
42 37 41 s2cld φ x W n 0 x a I b 2 𝑜 ⟨“ a b a 1 𝑜 b ”⟩ Word I × 2 𝑜
43 splcl x Word I × 2 𝑜 ⟨“ a b a 1 𝑜 b ”⟩ Word I × 2 𝑜 x splice n n ⟨“ a b a 1 𝑜 b ”⟩ Word I × 2 𝑜
44 35 42 43 syl2anc φ x W n 0 x a I b 2 𝑜 x splice n n ⟨“ a b a 1 𝑜 b ”⟩ Word I × 2 𝑜
45 7 efgrcl x W I V W = Word I × 2 𝑜
46 32 45 syl φ x W n 0 x a I b 2 𝑜 I V W = Word I × 2 𝑜
47 46 simprd φ x W n 0 x a I b 2 𝑜 W = Word I × 2 𝑜
48 44 47 eleqtrrd φ x W n 0 x a I b 2 𝑜 x splice n n ⟨“ a b a 1 𝑜 b ”⟩ W
49 pfxcl x Word I × 2 𝑜 x prefix n Word I × 2 𝑜
50 35 49 syl φ x W n 0 x a I b 2 𝑜 x prefix n Word I × 2 𝑜
51 1 2 3 4 5 6 frgpuptf φ T : I × 2 𝑜 B
52 51 ad2antrr φ x W n 0 x a I b 2 𝑜 T : I × 2 𝑜 B
53 ccatco x prefix n Word I × 2 𝑜 ⟨“ a b a 1 𝑜 b ”⟩ Word I × 2 𝑜 T : I × 2 𝑜 B T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ = T x prefix n ++ T ⟨“ a b a 1 𝑜 b ”⟩
54 50 42 52 53 syl3anc φ x W n 0 x a I b 2 𝑜 T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ = T x prefix n ++ T ⟨“ a b a 1 𝑜 b ”⟩
55 54 oveq2d φ x W n 0 x a I b 2 𝑜 H T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ = H T x prefix n ++ T ⟨“ a b a 1 𝑜 b ”⟩
56 4 ad2antrr φ x W n 0 x a I b 2 𝑜 H Grp
57 56 grpmndd φ x W n 0 x a I b 2 𝑜 H Mnd
58 wrdco x prefix n Word I × 2 𝑜 T : I × 2 𝑜 B T x prefix n Word B
59 50 52 58 syl2anc φ x W n 0 x a I b 2 𝑜 T x prefix n Word B
60 wrdco ⟨“ a b a 1 𝑜 b ”⟩ Word I × 2 𝑜 T : I × 2 𝑜 B T ⟨“ a b a 1 𝑜 b ”⟩ Word B
61 42 52 60 syl2anc φ x W n 0 x a I b 2 𝑜 T ⟨“ a b a 1 𝑜 b ”⟩ Word B
62 eqid + H = + H
63 1 62 gsumccat H Mnd T x prefix n Word B T ⟨“ a b a 1 𝑜 b ”⟩ Word B H T x prefix n ++ T ⟨“ a b a 1 𝑜 b ”⟩ = H T x prefix n + H H T ⟨“ a b a 1 𝑜 b ”⟩
64 57 59 61 63 syl3anc φ x W n 0 x a I b 2 𝑜 H T x prefix n ++ T ⟨“ a b a 1 𝑜 b ”⟩ = H T x prefix n + H H T ⟨“ a b a 1 𝑜 b ”⟩
65 52 37 41 s2co φ x W n 0 x a I b 2 𝑜 T ⟨“ a b a 1 𝑜 b ”⟩ = ⟨“ T a b T a 1 𝑜 b ”⟩
66 df-ov a T b = T a b
67 66 a1i φ x W n 0 x a I b 2 𝑜 a T b = T a b
68 66 fveq2i N a T b = N T a b
69 df-ov a y I , z 2 𝑜 y 1 𝑜 z b = y I , z 2 𝑜 y 1 𝑜 z a b
70 eqid y I , z 2 𝑜 y 1 𝑜 z = y I , z 2 𝑜 y 1 𝑜 z
71 70 efgmval a I b 2 𝑜 a y I , z 2 𝑜 y 1 𝑜 z b = a 1 𝑜 b
72 69 71 eqtr3id a I b 2 𝑜 y I , z 2 𝑜 y 1 𝑜 z a b = a 1 𝑜 b
73 72 adantl φ x W n 0 x a I b 2 𝑜 y I , z 2 𝑜 y 1 𝑜 z a b = a 1 𝑜 b
74 73 fveq2d φ x W n 0 x a I b 2 𝑜 T y I , z 2 𝑜 y 1 𝑜 z a b = T a 1 𝑜 b
75 1 2 3 4 5 6 70 frgpuptinv φ a b I × 2 𝑜 T y I , z 2 𝑜 y 1 𝑜 z a b = N T a b
76 36 75 sylan2 φ a I b 2 𝑜 T y I , z 2 𝑜 y 1 𝑜 z a b = N T a b
77 76 adantlr φ x W n 0 x a I b 2 𝑜 T y I , z 2 𝑜 y 1 𝑜 z a b = N T a b
78 74 77 eqtr3d φ x W n 0 x a I b 2 𝑜 T a 1 𝑜 b = N T a b
79 68 78 eqtr4id φ x W n 0 x a I b 2 𝑜 N a T b = T a 1 𝑜 b
80 67 79 s2eqd φ x W n 0 x a I b 2 𝑜 ⟨“ a T b N a T b ”⟩ = ⟨“ T a b T a 1 𝑜 b ”⟩
81 65 80 eqtr4d φ x W n 0 x a I b 2 𝑜 T ⟨“ a b a 1 𝑜 b ”⟩ = ⟨“ a T b N a T b ”⟩
82 81 oveq2d φ x W n 0 x a I b 2 𝑜 H T ⟨“ a b a 1 𝑜 b ”⟩ = H ⟨“ a T b N a T b ”⟩
83 simprr φ x W n 0 x a I b 2 𝑜 b 2 𝑜
84 52 38 83 fovrnd φ x W n 0 x a I b 2 𝑜 a T b B
85 1 2 grpinvcl H Grp a T b B N a T b B
86 56 84 85 syl2anc φ x W n 0 x a I b 2 𝑜 N a T b B
87 1 62 gsumws2 H Mnd a T b B N a T b B H ⟨“ a T b N a T b ”⟩ = a T b + H N a T b
88 57 84 86 87 syl3anc φ x W n 0 x a I b 2 𝑜 H ⟨“ a T b N a T b ”⟩ = a T b + H N a T b
89 eqid 0 H = 0 H
90 1 62 89 2 grprinv H Grp a T b B a T b + H N a T b = 0 H
91 56 84 90 syl2anc φ x W n 0 x a I b 2 𝑜 a T b + H N a T b = 0 H
92 82 88 91 3eqtrd φ x W n 0 x a I b 2 𝑜 H T ⟨“ a b a 1 𝑜 b ”⟩ = 0 H
93 92 oveq2d φ x W n 0 x a I b 2 𝑜 H T x prefix n + H H T ⟨“ a b a 1 𝑜 b ”⟩ = H T x prefix n + H 0 H
94 1 gsumwcl H Mnd T x prefix n Word B H T x prefix n B
95 57 59 94 syl2anc φ x W n 0 x a I b 2 𝑜 H T x prefix n B
96 1 62 89 grprid H Grp H T x prefix n B H T x prefix n + H 0 H = H T x prefix n
97 56 95 96 syl2anc φ x W n 0 x a I b 2 𝑜 H T x prefix n + H 0 H = H T x prefix n
98 93 97 eqtrd φ x W n 0 x a I b 2 𝑜 H T x prefix n + H H T ⟨“ a b a 1 𝑜 b ”⟩ = H T x prefix n
99 55 64 98 3eqtrrd φ x W n 0 x a I b 2 𝑜 H T x prefix n = H T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩
100 99 oveq1d φ x W n 0 x a I b 2 𝑜 H T x prefix n + H H T x substr n x = H T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ + H H T x substr n x
101 swrdcl x Word I × 2 𝑜 x substr n x Word I × 2 𝑜
102 35 101 syl φ x W n 0 x a I b 2 𝑜 x substr n x Word I × 2 𝑜
103 wrdco x substr n x Word I × 2 𝑜 T : I × 2 𝑜 B T x substr n x Word B
104 102 52 103 syl2anc φ x W n 0 x a I b 2 𝑜 T x substr n x Word B
105 1 62 gsumccat H Mnd T x prefix n Word B T x substr n x Word B H T x prefix n ++ T x substr n x = H T x prefix n + H H T x substr n x
106 57 59 104 105 syl3anc φ x W n 0 x a I b 2 𝑜 H T x prefix n ++ T x substr n x = H T x prefix n + H H T x substr n x
107 ccatcl x prefix n Word I × 2 𝑜 ⟨“ a b a 1 𝑜 b ”⟩ Word I × 2 𝑜 x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ Word I × 2 𝑜
108 50 42 107 syl2anc φ x W n 0 x a I b 2 𝑜 x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ Word I × 2 𝑜
109 wrdco x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ Word I × 2 𝑜 T : I × 2 𝑜 B T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ Word B
110 108 52 109 syl2anc φ x W n 0 x a I b 2 𝑜 T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ Word B
111 1 62 gsumccat H Mnd T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ Word B T x substr n x Word B H T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ ++ T x substr n x = H T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ + H H T x substr n x
112 57 110 104 111 syl3anc φ x W n 0 x a I b 2 𝑜 H T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ ++ T x substr n x = H T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ + H H T x substr n x
113 100 106 112 3eqtr4d φ x W n 0 x a I b 2 𝑜 H T x prefix n ++ T x substr n x = H T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ ++ T x substr n x
114 simplrr φ x W n 0 x a I b 2 𝑜 n 0 x
115 lencl x Word I × 2 𝑜 x 0
116 35 115 syl φ x W n 0 x a I b 2 𝑜 x 0
117 nn0uz 0 = 0
118 116 117 eleqtrdi φ x W n 0 x a I b 2 𝑜 x 0
119 eluzfz2 x 0 x 0 x
120 118 119 syl φ x W n 0 x a I b 2 𝑜 x 0 x
121 ccatpfx x Word I × 2 𝑜 n 0 x x 0 x x prefix n ++ x substr n x = x prefix x
122 35 114 120 121 syl3anc φ x W n 0 x a I b 2 𝑜 x prefix n ++ x substr n x = x prefix x
123 pfxid x Word I × 2 𝑜 x prefix x = x
124 35 123 syl φ x W n 0 x a I b 2 𝑜 x prefix x = x
125 122 124 eqtrd φ x W n 0 x a I b 2 𝑜 x prefix n ++ x substr n x = x
126 125 coeq2d φ x W n 0 x a I b 2 𝑜 T x prefix n ++ x substr n x = T x
127 ccatco x prefix n Word I × 2 𝑜 x substr n x Word I × 2 𝑜 T : I × 2 𝑜 B T x prefix n ++ x substr n x = T x prefix n ++ T x substr n x
128 50 102 52 127 syl3anc φ x W n 0 x a I b 2 𝑜 T x prefix n ++ x substr n x = T x prefix n ++ T x substr n x
129 126 128 eqtr3d φ x W n 0 x a I b 2 𝑜 T x = T x prefix n ++ T x substr n x
130 129 oveq2d φ x W n 0 x a I b 2 𝑜 H T x = H T x prefix n ++ T x substr n x
131 splval x W n 0 x n 0 x ⟨“ a b a 1 𝑜 b ”⟩ Word I × 2 𝑜 x splice n n ⟨“ a b a 1 𝑜 b ”⟩ = x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ ++ x substr n x
132 32 114 114 42 131 syl13anc φ x W n 0 x a I b 2 𝑜 x splice n n ⟨“ a b a 1 𝑜 b ”⟩ = x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ ++ x substr n x
133 132 coeq2d φ x W n 0 x a I b 2 𝑜 T x splice n n ⟨“ a b a 1 𝑜 b ”⟩ = T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ ++ x substr n x
134 ccatco x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ Word I × 2 𝑜 x substr n x Word I × 2 𝑜 T : I × 2 𝑜 B T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ ++ x substr n x = T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ ++ T x substr n x
135 108 102 52 134 syl3anc φ x W n 0 x a I b 2 𝑜 T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ ++ x substr n x = T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ ++ T x substr n x
136 133 135 eqtrd φ x W n 0 x a I b 2 𝑜 T x splice n n ⟨“ a b a 1 𝑜 b ”⟩ = T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ ++ T x substr n x
137 136 oveq2d φ x W n 0 x a I b 2 𝑜 H T x splice n n ⟨“ a b a 1 𝑜 b ”⟩ = H T x prefix n ++ ⟨“ a b a 1 𝑜 b ”⟩ ++ T x substr n x
138 113 130 137 3eqtr4d φ x W n 0 x a I b 2 𝑜 H T x = H T x splice n n ⟨“ a b a 1 𝑜 b ”⟩
139 vex x V
140 ovex x splice n n ⟨“ a b a 1 𝑜 b ”⟩ V
141 eleq1 u = x u W x W
142 eleq1 v = x splice n n ⟨“ a b a 1 𝑜 b ”⟩ v W x splice n n ⟨“ a b a 1 𝑜 b ”⟩ W
143 141 142 bi2anan9 u = x v = x splice n n ⟨“ a b a 1 𝑜 b ”⟩ u W v W x W x splice n n ⟨“ a b a 1 𝑜 b ”⟩ W
144 25 143 bitr3id u = x v = x splice n n ⟨“ a b a 1 𝑜 b ”⟩ u v W x W x splice n n ⟨“ a b a 1 𝑜 b ”⟩ W
145 coeq2 u = x T u = T x
146 145 oveq2d u = x H T u = H T x
147 coeq2 v = x splice n n ⟨“ a b a 1 𝑜 b ”⟩ T v = T x splice n n ⟨“ a b a 1 𝑜 b ”⟩
148 147 oveq2d v = x splice n n ⟨“ a b a 1 𝑜 b ”⟩ H T v = H T x splice n n ⟨“ a b a 1 𝑜 b ”⟩
149 146 148 eqeqan12d u = x v = x splice n n ⟨“ a b a 1 𝑜 b ”⟩ H T u = H T v H T x = H T x splice n n ⟨“ a b a 1 𝑜 b ”⟩
150 144 149 anbi12d u = x v = x splice n n ⟨“ a b a 1 𝑜 b ”⟩ u v W H T u = H T v x W x splice n n ⟨“ a b a 1 𝑜 b ”⟩ W H T x = H T x splice n n ⟨“ a b a 1 𝑜 b ”⟩
151 eqid u v | u v W H T u = H T v = u v | u v W H T u = H T v
152 139 140 150 151 braba x u v | u v W H T u = H T v x splice n n ⟨“ a b a 1 𝑜 b ”⟩ x W x splice n n ⟨“ a b a 1 𝑜 b ”⟩ W H T x = H T x splice n n ⟨“ a b a 1 𝑜 b ”⟩
153 32 48 138 152 syl21anbrc φ x W n 0 x a I b 2 𝑜 x u v | u v W H T u = H T v x splice n n ⟨“ a b a 1 𝑜 b ”⟩
154 153 ralrimivva φ x W n 0 x a I b 2 𝑜 x u v | u v W H T u = H T v x splice n n ⟨“ a b a 1 𝑜 b ”⟩
155 154 ralrimivva φ x W n 0 x a I b 2 𝑜 x u v | u v W H T u = H T v x splice n n ⟨“ a b a 1 𝑜 b ”⟩
156 7 fvexi W V
157 erex u v | u v W H T u = H T v Er W W V u v | u v W H T u = H T v V
158 31 156 157 mpisyl φ u v | u v W H T u = H T v V
159 ereq1 r = u v | u v W H T u = H T v r Er W u v | u v W H T u = H T v Er W
160 breq r = u v | u v W H T u = H T v x r x splice n n ⟨“ a b a 1 𝑜 b ”⟩ x u v | u v W H T u = H T v x splice n n ⟨“ a b a 1 𝑜 b ”⟩
161 160 2ralbidv r = u v | u v W H T u = H T v a I b 2 𝑜 x r x splice n n ⟨“ a b a 1 𝑜 b ”⟩ a I b 2 𝑜 x u v | u v W H T u = H T v x splice n n ⟨“ a b a 1 𝑜 b ”⟩
162 161 2ralbidv r = u v | u v W H T u = H T v x W n 0 x a I b 2 𝑜 x r x splice n n ⟨“ a b a 1 𝑜 b ”⟩ x W n 0 x a I b 2 𝑜 x u v | u v W H T u = H T v x splice n n ⟨“ a b a 1 𝑜 b ”⟩
163 159 162 anbi12d r = u v | u v W H T u = H T v r Er W x W n 0 x a I b 2 𝑜 x r x splice n n ⟨“ a b a 1 𝑜 b ”⟩ u v | u v W H T u = H T v Er W x W n 0 x a I b 2 𝑜 x u v | u v W H T u = H T v x splice n n ⟨“ a b a 1 𝑜 b ”⟩
164 163 elabg u v | u v W H T u = H T v V u v | u v W H T u = H T v r | r Er W x W n 0 x a I b 2 𝑜 x r x splice n n ⟨“ a b a 1 𝑜 b ”⟩ u v | u v W H T u = H T v Er W x W n 0 x a I b 2 𝑜 x u v | u v W H T u = H T v x splice n n ⟨“ a b a 1 𝑜 b ”⟩
165 158 164 syl φ u v | u v W H T u = H T v r | r Er W x W n 0 x a I b 2 𝑜 x r x splice n n ⟨“ a b a 1 𝑜 b ”⟩ u v | u v W H T u = H T v Er W x W n 0 x a I b 2 𝑜 x u v | u v W H T u = H T v x splice n n ⟨“ a b a 1 𝑜 b ”⟩
166 31 155 165 mpbir2and φ u v | u v W H T u = H T v r | r Er W x W n 0 x a I b 2 𝑜 x r x splice n n ⟨“ a b a 1 𝑜 b ”⟩
167 intss1 u v | u v W H T u = H T v r | r Er W x W n 0 x a I b 2 𝑜 x r x splice n n ⟨“ a b a 1 𝑜 b ”⟩ r | r Er W x W n 0 x a I b 2 𝑜 x r x splice n n ⟨“ a b a 1 𝑜 b ”⟩ u v | u v W H T u = H T v
168 166 167 syl φ r | r Er W x W n 0 x a I b 2 𝑜 x r x splice n n ⟨“ a b a 1 𝑜 b ”⟩ u v | u v W H T u = H T v
169 9 168 eqsstrid φ ˙ u v | u v W H T u = H T v
170 169 ssbrd φ A ˙ C A u v | u v W H T u = H T v C
171 170 imp φ A ˙ C A u v | u v W H T u = H T v C
172 7 8 efger ˙ Er W
173 errel ˙ Er W Rel ˙
174 172 173 mp1i φ Rel ˙
175 brrelex12 Rel ˙ A ˙ C A V C V
176 174 175 sylan φ A ˙ C A V C V
177 preq12 u = A v = C u v = A C
178 177 sseq1d u = A v = C u v W A C W
179 coeq2 u = A T u = T A
180 179 oveq2d u = A H T u = H T A
181 coeq2 v = C T v = T C
182 181 oveq2d v = C H T v = H T C
183 180 182 eqeqan12d u = A v = C H T u = H T v H T A = H T C
184 178 183 anbi12d u = A v = C u v W H T u = H T v A C W H T A = H T C
185 184 151 brabga A V C V A u v | u v W H T u = H T v C A C W H T A = H T C
186 176 185 syl φ A ˙ C A u v | u v W H T u = H T v C A C W H T A = H T C
187 171 186 mpbid φ A ˙ C A C W H T A = H T C
188 187 simprd φ A ˙ C H T A = H T C