Metamath Proof Explorer


Theorem frgpuptf

Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses frgpup.b B = Base H
frgpup.n N = inv g H
frgpup.t T = y I , z 2 𝑜 if z = F y N F y
frgpup.h φ H Grp
frgpup.i φ I V
frgpup.a φ F : I B
Assertion frgpuptf φ T : I × 2 𝑜 B

Proof

Step Hyp Ref Expression
1 frgpup.b B = Base H
2 frgpup.n N = inv g H
3 frgpup.t T = y I , z 2 𝑜 if z = F y N F y
4 frgpup.h φ H Grp
5 frgpup.i φ I V
6 frgpup.a φ F : I B
7 6 ffvelrnda φ y I F y B
8 7 adantrr φ y I z 2 𝑜 F y B
9 1 2 grpinvcl H Grp F y B N F y B
10 4 8 9 syl2an2r φ y I z 2 𝑜 N F y B
11 8 10 ifcld φ y I z 2 𝑜 if z = F y N F y B
12 11 ralrimivva φ y I z 2 𝑜 if z = F y N F y B
13 3 fmpo y I z 2 𝑜 if z = F y N F y B T : I × 2 𝑜 B
14 12 13 sylib φ T : I × 2 𝑜 B