Metamath Proof Explorer


Theorem frgpupval

Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses frgpup.b B = Base H
frgpup.n N = inv g H
frgpup.t T = y I , z 2 𝑜 if z = F y N F y
frgpup.h φ H Grp
frgpup.i φ I V
frgpup.a φ F : I B
frgpup.w W = I Word I × 2 𝑜
frgpup.r ˙ = ~ FG I
frgpup.g G = freeGrp I
frgpup.x X = Base G
frgpup.e E = ran g W g ˙ H T g
Assertion frgpupval φ A W E A ˙ = H T A

Proof

Step Hyp Ref Expression
1 frgpup.b B = Base H
2 frgpup.n N = inv g H
3 frgpup.t T = y I , z 2 𝑜 if z = F y N F y
4 frgpup.h φ H Grp
5 frgpup.i φ I V
6 frgpup.a φ F : I B
7 frgpup.w W = I Word I × 2 𝑜
8 frgpup.r ˙ = ~ FG I
9 frgpup.g G = freeGrp I
10 frgpup.x X = Base G
11 frgpup.e E = ran g W g ˙ H T g
12 ovexd φ g W H T g V
13 7 8 efger ˙ Er W
14 13 a1i φ ˙ Er W
15 7 fvexi W V
16 15 a1i φ W V
17 coeq2 g = A T g = T A
18 17 oveq2d g = A H T g = H T A
19 1 2 3 4 5 6 7 8 9 10 11 frgpupf φ E : X B
20 19 ffund φ Fun E
21 11 12 14 16 18 20 qliftval φ A W E A ˙ = H T A