Database
BASIC ALGEBRAIC STRUCTURES
Groups
Free groups
frgpval
Next ⟩
frgpcpbl
Metamath Proof Explorer
Ascii
Unicode
Theorem
frgpval
Description:
Value of the free group construction.
(Contributed by
Mario Carneiro
, 1-Oct-2015)
Ref
Expression
Hypotheses
frgpval.m
⊢
G
=
freeGrp
⁡
I
frgpval.b
⊢
M
=
freeMnd
⁡
I
×
2
𝑜
frgpval.r
⊢
∼
˙
=
~
FG
⁡
I
Assertion
frgpval
⊢
I
∈
V
→
G
=
M
/
𝑠
∼
˙
Proof
Step
Hyp
Ref
Expression
1
frgpval.m
⊢
G
=
freeGrp
⁡
I
2
frgpval.b
⊢
M
=
freeMnd
⁡
I
×
2
𝑜
3
frgpval.r
⊢
∼
˙
=
~
FG
⁡
I
4
elex
⊢
I
∈
V
→
I
∈
V
5
xpeq1
⊢
i
=
I
→
i
×
2
𝑜
=
I
×
2
𝑜
6
5
fveq2d
⊢
i
=
I
→
freeMnd
⁡
i
×
2
𝑜
=
freeMnd
⁡
I
×
2
𝑜
7
6
2
eqtr4di
⊢
i
=
I
→
freeMnd
⁡
i
×
2
𝑜
=
M
8
fveq2
⊢
i
=
I
→
~
FG
⁡
i
=
~
FG
⁡
I
9
8
3
eqtr4di
⊢
i
=
I
→
~
FG
⁡
i
=
∼
˙
10
7
9
oveq12d
⊢
i
=
I
→
freeMnd
⁡
i
×
2
𝑜
/
𝑠
~
FG
⁡
i
=
M
/
𝑠
∼
˙
11
df-frgp
⊢
freeGrp
=
i
∈
V
⟼
freeMnd
⁡
i
×
2
𝑜
/
𝑠
~
FG
⁡
i
12
ovex
⊢
M
/
𝑠
∼
˙
∈
V
13
10
11
12
fvmpt
⊢
I
∈
V
→
freeGrp
⁡
I
=
M
/
𝑠
∼
˙
14
4
13
syl
⊢
I
∈
V
→
freeGrp
⁡
I
=
M
/
𝑠
∼
˙
15
1
14
eqtrid
⊢
I
∈
V
→
G
=
M
/
𝑠
∼
˙