Metamath Proof Explorer


Theorem frgr0v

Description: Any null graph (set with no vertices) is a friendship graph iff its edge function is empty. (Contributed by Alexander van der Vekens, 4-Oct-2017) (Revised by AV, 29-Mar-2021)

Ref Expression
Assertion frgr0v G W Vtx G = G FriendGraph iEdg G =

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid Edg G = Edg G
3 1 2 isfrgr G FriendGraph G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G
4 usgruhgr G USGraph G UHGraph
5 4 adantr G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G G UHGraph
6 uhgr0vb G W Vtx G = G UHGraph iEdg G =
7 5 6 syl5ib G W Vtx G = G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G iEdg G =
8 simpll G W Vtx G = iEdg G = G W
9 simpr G W Vtx G = iEdg G = iEdg G =
10 8 9 usgr0e G W Vtx G = iEdg G = G USGraph
11 ral0 k l Vtx G k ∃! x Vtx G x k x l Edg G
12 raleq Vtx G = k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G k l Vtx G k ∃! x Vtx G x k x l Edg G
13 12 adantl G W Vtx G = k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G k l Vtx G k ∃! x Vtx G x k x l Edg G
14 11 13 mpbiri G W Vtx G = k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G
15 14 adantr G W Vtx G = iEdg G = k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G
16 10 15 jca G W Vtx G = iEdg G = G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G
17 16 ex G W Vtx G = iEdg G = G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G
18 7 17 impbid G W Vtx G = G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G iEdg G =
19 3 18 syl5bb G W Vtx G = G FriendGraph iEdg G =