Metamath Proof Explorer


Theorem frgr2wsp1

Description: In a friendship graph, there is exactly one simple path of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 3-Mar-2018) (Revised by AV, 13-May-2021)

Ref Expression
Hypothesis frgr2wwlkeu.v V=VtxG
Assertion frgr2wsp1 GFriendGraphAVBVABA2WSPathsNOnGB=1

Proof

Step Hyp Ref Expression
1 frgr2wwlkeu.v V=VtxG
2 frgrusgr GFriendGraphGUSGraph
3 wpthswwlks2on GUSGraphABA2WSPathsNOnGB=A2WWalksNOnGB
4 2 3 sylan GFriendGraphABA2WSPathsNOnGB=A2WWalksNOnGB
5 4 3adant2 GFriendGraphAVBVABA2WSPathsNOnGB=A2WWalksNOnGB
6 5 fveq2d GFriendGraphAVBVABA2WSPathsNOnGB=A2WWalksNOnGB
7 1 frgr2wwlk1 GFriendGraphAVBVABA2WWalksNOnGB=1
8 6 7 eqtrd GFriendGraphAVBVABA2WSPathsNOnGB=1