Step |
Hyp |
Ref |
Expression |
1 |
|
frgr2wwlkeu.v |
|
2 |
1
|
frgr2wwlkn0 |
|
3 |
1
|
elwwlks2ons3 |
|
4 |
1
|
elwwlks2ons3 |
|
5 |
3 4
|
anbi12i |
|
6 |
1
|
frgr2wwlkeu |
|
7 |
|
s3eq2 |
|
8 |
7
|
eleq1d |
|
9 |
8
|
reu4 |
|
10 |
|
s3eq2 |
|
11 |
10
|
eleq1d |
|
12 |
11
|
anbi1d |
|
13 |
|
equequ1 |
|
14 |
12 13
|
imbi12d |
|
15 |
|
s3eq2 |
|
16 |
15
|
eleq1d |
|
17 |
16
|
anbi2d |
|
18 |
|
equequ2 |
|
19 |
17 18
|
imbi12d |
|
20 |
14 19
|
rspc2va |
|
21 |
|
pm3.35 |
|
22 |
|
s3eq2 |
|
23 |
22
|
equcoms |
|
24 |
23
|
adantr |
|
25 |
|
eqeq12 |
|
26 |
25
|
adantl |
|
27 |
24 26
|
mpbird |
|
28 |
27
|
equcomd |
|
29 |
28
|
ex |
|
30 |
21 29
|
syl |
|
31 |
30
|
ex |
|
32 |
31
|
com23 |
|
33 |
32
|
exp4b |
|
34 |
33
|
com13 |
|
35 |
34
|
imp |
|
36 |
35
|
com13 |
|
37 |
36
|
imp |
|
38 |
37
|
com13 |
|
39 |
20 38
|
syl |
|
40 |
39
|
expcom |
|
41 |
9 40
|
simplbiim |
|
42 |
41
|
impl |
|
43 |
42
|
rexlimdva |
|
44 |
43
|
com23 |
|
45 |
44
|
rexlimdva |
|
46 |
45
|
impd |
|
47 |
6 46
|
syl |
|
48 |
5 47
|
syl5bi |
|
49 |
48
|
alrimivv |
|
50 |
|
eqeuel |
|
51 |
2 49 50
|
syl2anc |
|
52 |
|
ovex |
|
53 |
|
euhash1 |
|
54 |
52 53
|
mp1i |
|
55 |
51 54
|
mpbird |
|