Metamath Proof Explorer


Theorem frgr2wwlkeqm

Description: If there is a (simple) path of length 2 from one vertex to another vertex and a (simple) path of length 2 from the other vertex back to the first vertex in a friendship graph, then the middle vertex is the same. This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 20-Feb-2018) (Revised by AV, 13-May-2021) (Proof shortened by AV, 7-Jan-2022)

Ref Expression
Assertion frgr2wwlkeqm G FriendGraph A B P X Q Y ⟨“ APB ”⟩ A 2 WWalksNOn G B ⟨“ BQA ”⟩ B 2 WWalksNOn G A Q = P

Proof

Step Hyp Ref Expression
1 simp3l G FriendGraph A B P X Q Y P X
2 eqid Vtx G = Vtx G
3 2 wwlks2onv P X ⟨“ APB ”⟩ A 2 WWalksNOn G B A Vtx G P Vtx G B Vtx G
4 1 3 sylan G FriendGraph A B P X Q Y ⟨“ APB ”⟩ A 2 WWalksNOn G B A Vtx G P Vtx G B Vtx G
5 simp3r G FriendGraph A B P X Q Y Q Y
6 2 wwlks2onv Q Y ⟨“ BQA ”⟩ B 2 WWalksNOn G A B Vtx G Q Vtx G A Vtx G
7 5 6 sylan G FriendGraph A B P X Q Y ⟨“ BQA ”⟩ B 2 WWalksNOn G A B Vtx G Q Vtx G A Vtx G
8 frgrusgr G FriendGraph G USGraph
9 usgrumgr G USGraph G UMGraph
10 8 9 syl G FriendGraph G UMGraph
11 10 3ad2ant1 G FriendGraph A B P X Q Y G UMGraph
12 simpr3 Q Vtx G A Vtx G P Vtx G B Vtx G B Vtx G
13 simpl Q Vtx G A Vtx G P Vtx G B Vtx G Q Vtx G
14 simpr1 Q Vtx G A Vtx G P Vtx G B Vtx G A Vtx G
15 12 13 14 3jca Q Vtx G A Vtx G P Vtx G B Vtx G B Vtx G Q Vtx G A Vtx G
16 2 wwlks2onsym G UMGraph B Vtx G Q Vtx G A Vtx G ⟨“ BQA ”⟩ B 2 WWalksNOn G A ⟨“ AQB ”⟩ A 2 WWalksNOn G B
17 11 15 16 syl2anr Q Vtx G A Vtx G P Vtx G B Vtx G G FriendGraph A B P X Q Y ⟨“ BQA ”⟩ B 2 WWalksNOn G A ⟨“ AQB ”⟩ A 2 WWalksNOn G B
18 simpr1 Q Vtx G A Vtx G P Vtx G B Vtx G G FriendGraph A B P X Q Y G FriendGraph
19 3simpb A Vtx G P Vtx G B Vtx G A Vtx G B Vtx G
20 19 ad2antlr Q Vtx G A Vtx G P Vtx G B Vtx G G FriendGraph A B P X Q Y A Vtx G B Vtx G
21 simpr2 Q Vtx G A Vtx G P Vtx G B Vtx G G FriendGraph A B P X Q Y A B
22 2 frgr2wwlkeu G FriendGraph A Vtx G B Vtx G A B ∃! x Vtx G ⟨“ AxB ”⟩ A 2 WWalksNOn G B
23 18 20 21 22 syl3anc Q Vtx G A Vtx G P Vtx G B Vtx G G FriendGraph A B P X Q Y ∃! x Vtx G ⟨“ AxB ”⟩ A 2 WWalksNOn G B
24 s3eq2 x = Q ⟨“ AxB ”⟩ = ⟨“ AQB ”⟩
25 24 eleq1d x = Q ⟨“ AxB ”⟩ A 2 WWalksNOn G B ⟨“ AQB ”⟩ A 2 WWalksNOn G B
26 25 riota2 Q Vtx G ∃! x Vtx G ⟨“ AxB ”⟩ A 2 WWalksNOn G B ⟨“ AQB ”⟩ A 2 WWalksNOn G B ι x Vtx G | ⟨“ AxB ”⟩ A 2 WWalksNOn G B = Q
27 26 ad4ant14 Q Vtx G A Vtx G P Vtx G B Vtx G G FriendGraph A B P X Q Y ∃! x Vtx G ⟨“ AxB ”⟩ A 2 WWalksNOn G B ⟨“ AQB ”⟩ A 2 WWalksNOn G B ι x Vtx G | ⟨“ AxB ”⟩ A 2 WWalksNOn G B = Q
28 simplr2 Q Vtx G A Vtx G P Vtx G B Vtx G G FriendGraph A B P X Q Y P Vtx G
29 s3eq2 x = P ⟨“ AxB ”⟩ = ⟨“ APB ”⟩
30 29 eleq1d x = P ⟨“ AxB ”⟩ A 2 WWalksNOn G B ⟨“ APB ”⟩ A 2 WWalksNOn G B
31 30 riota2 P Vtx G ∃! x Vtx G ⟨“ AxB ”⟩ A 2 WWalksNOn G B ⟨“ APB ”⟩ A 2 WWalksNOn G B ι x Vtx G | ⟨“ AxB ”⟩ A 2 WWalksNOn G B = P
32 28 31 sylan Q Vtx G A Vtx G P Vtx G B Vtx G G FriendGraph A B P X Q Y ∃! x Vtx G ⟨“ AxB ”⟩ A 2 WWalksNOn G B ⟨“ APB ”⟩ A 2 WWalksNOn G B ι x Vtx G | ⟨“ AxB ”⟩ A 2 WWalksNOn G B = P
33 eqtr2 ι x Vtx G | ⟨“ AxB ”⟩ A 2 WWalksNOn G B = Q ι x Vtx G | ⟨“ AxB ”⟩ A 2 WWalksNOn G B = P Q = P
34 33 expcom ι x Vtx G | ⟨“ AxB ”⟩ A 2 WWalksNOn G B = P ι x Vtx G | ⟨“ AxB ”⟩ A 2 WWalksNOn G B = Q Q = P
35 32 34 syl6bi Q Vtx G A Vtx G P Vtx G B Vtx G G FriendGraph A B P X Q Y ∃! x Vtx G ⟨“ AxB ”⟩ A 2 WWalksNOn G B ⟨“ APB ”⟩ A 2 WWalksNOn G B ι x Vtx G | ⟨“ AxB ”⟩ A 2 WWalksNOn G B = Q Q = P
36 35 com23 Q Vtx G A Vtx G P Vtx G B Vtx G G FriendGraph A B P X Q Y ∃! x Vtx G ⟨“ AxB ”⟩ A 2 WWalksNOn G B ι x Vtx G | ⟨“ AxB ”⟩ A 2 WWalksNOn G B = Q ⟨“ APB ”⟩ A 2 WWalksNOn G B Q = P
37 27 36 sylbid Q Vtx G A Vtx G P Vtx G B Vtx G G FriendGraph A B P X Q Y ∃! x Vtx G ⟨“ AxB ”⟩ A 2 WWalksNOn G B ⟨“ AQB ”⟩ A 2 WWalksNOn G B ⟨“ APB ”⟩ A 2 WWalksNOn G B Q = P
38 23 37 mpdan Q Vtx G A Vtx G P Vtx G B Vtx G G FriendGraph A B P X Q Y ⟨“ AQB ”⟩ A 2 WWalksNOn G B ⟨“ APB ”⟩ A 2 WWalksNOn G B Q = P
39 17 38 sylbid Q Vtx G A Vtx G P Vtx G B Vtx G G FriendGraph A B P X Q Y ⟨“ BQA ”⟩ B 2 WWalksNOn G A ⟨“ APB ”⟩ A 2 WWalksNOn G B Q = P
40 39 expimpd Q Vtx G A Vtx G P Vtx G B Vtx G G FriendGraph A B P X Q Y ⟨“ BQA ”⟩ B 2 WWalksNOn G A ⟨“ APB ”⟩ A 2 WWalksNOn G B Q = P
41 40 ex Q Vtx G A Vtx G P Vtx G B Vtx G G FriendGraph A B P X Q Y ⟨“ BQA ”⟩ B 2 WWalksNOn G A ⟨“ APB ”⟩ A 2 WWalksNOn G B Q = P
42 41 com23 Q Vtx G G FriendGraph A B P X Q Y ⟨“ BQA ”⟩ B 2 WWalksNOn G A A Vtx G P Vtx G B Vtx G ⟨“ APB ”⟩ A 2 WWalksNOn G B Q = P
43 42 3ad2ant2 B Vtx G Q Vtx G A Vtx G G FriendGraph A B P X Q Y ⟨“ BQA ”⟩ B 2 WWalksNOn G A A Vtx G P Vtx G B Vtx G ⟨“ APB ”⟩ A 2 WWalksNOn G B Q = P
44 7 43 mpcom G FriendGraph A B P X Q Y ⟨“ BQA ”⟩ B 2 WWalksNOn G A A Vtx G P Vtx G B Vtx G ⟨“ APB ”⟩ A 2 WWalksNOn G B Q = P
45 44 ex G FriendGraph A B P X Q Y ⟨“ BQA ”⟩ B 2 WWalksNOn G A A Vtx G P Vtx G B Vtx G ⟨“ APB ”⟩ A 2 WWalksNOn G B Q = P
46 45 com24 G FriendGraph A B P X Q Y ⟨“ APB ”⟩ A 2 WWalksNOn G B A Vtx G P Vtx G B Vtx G ⟨“ BQA ”⟩ B 2 WWalksNOn G A Q = P
47 46 imp G FriendGraph A B P X Q Y ⟨“ APB ”⟩ A 2 WWalksNOn G B A Vtx G P Vtx G B Vtx G ⟨“ BQA ”⟩ B 2 WWalksNOn G A Q = P
48 4 47 mpd G FriendGraph A B P X Q Y ⟨“ APB ”⟩ A 2 WWalksNOn G B ⟨“ BQA ”⟩ B 2 WWalksNOn G A Q = P
49 48 expimpd G FriendGraph A B P X Q Y ⟨“ APB ”⟩ A 2 WWalksNOn G B ⟨“ BQA ”⟩ B 2 WWalksNOn G A Q = P