| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3l |
|
| 2 |
|
eqid |
|
| 3 |
2
|
wwlks2onv |
|
| 4 |
1 3
|
sylan |
|
| 5 |
|
simp3r |
|
| 6 |
2
|
wwlks2onv |
|
| 7 |
5 6
|
sylan |
|
| 8 |
|
frgrusgr |
|
| 9 |
|
usgrumgr |
|
| 10 |
8 9
|
syl |
|
| 11 |
10
|
3ad2ant1 |
|
| 12 |
|
simpr3 |
|
| 13 |
|
simpl |
|
| 14 |
|
simpr1 |
|
| 15 |
12 13 14
|
3jca |
|
| 16 |
2
|
wwlks2onsym |
|
| 17 |
11 15 16
|
syl2anr |
|
| 18 |
|
simpr1 |
|
| 19 |
|
3simpb |
|
| 20 |
19
|
ad2antlr |
|
| 21 |
|
simpr2 |
|
| 22 |
2
|
frgr2wwlkeu |
|
| 23 |
18 20 21 22
|
syl3anc |
|
| 24 |
|
s3eq2 |
|
| 25 |
24
|
eleq1d |
|
| 26 |
25
|
riota2 |
|
| 27 |
26
|
ad4ant14 |
|
| 28 |
|
simplr2 |
|
| 29 |
|
s3eq2 |
|
| 30 |
29
|
eleq1d |
|
| 31 |
30
|
riota2 |
|
| 32 |
28 31
|
sylan |
|
| 33 |
|
eqtr2 |
|
| 34 |
33
|
expcom |
|
| 35 |
32 34
|
biimtrdi |
|
| 36 |
35
|
com23 |
|
| 37 |
27 36
|
sylbid |
|
| 38 |
23 37
|
mpdan |
|
| 39 |
17 38
|
sylbid |
|
| 40 |
39
|
expimpd |
|
| 41 |
40
|
ex |
|
| 42 |
41
|
com23 |
|
| 43 |
42
|
3ad2ant2 |
|
| 44 |
7 43
|
mpcom |
|
| 45 |
44
|
ex |
|
| 46 |
45
|
com24 |
|
| 47 |
46
|
imp |
|
| 48 |
4 47
|
mpd |
|
| 49 |
48
|
expimpd |
|