Metamath Proof Explorer


Theorem frgr2wwlkeu

Description: For two different vertices in a friendship graph, there is exactly one third vertex being the middle vertex of a (simple) path/walk of length 2 between the two vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 12-May-2021) (Proof shortened by AV, 4-Jan-2022)

Ref Expression
Hypothesis frgr2wwlkeu.v V = Vtx G
Assertion frgr2wwlkeu G FriendGraph A V B V A B ∃! c V ⟨“ AcB ”⟩ A 2 WWalksNOn G B

Proof

Step Hyp Ref Expression
1 frgr2wwlkeu.v V = Vtx G
2 df-3an A V B V A B A V B V A B
3 eqid Edg G = Edg G
4 1 3 frcond2 G FriendGraph A V B V A B ∃! c V A c Edg G c B Edg G
5 2 4 syl5bir G FriendGraph A V B V A B ∃! c V A c Edg G c B Edg G
6 5 3impib G FriendGraph A V B V A B ∃! c V A c Edg G c B Edg G
7 frgrusgr G FriendGraph G USGraph
8 usgrumgr G USGraph G UMGraph
9 3anan32 A V c V B V A V B V c V
10 1 3 umgrwwlks2on G UMGraph A V c V B V ⟨“ AcB ”⟩ A 2 WWalksNOn G B A c Edg G c B Edg G
11 10 ex G UMGraph A V c V B V ⟨“ AcB ”⟩ A 2 WWalksNOn G B A c Edg G c B Edg G
12 9 11 syl5bir G UMGraph A V B V c V ⟨“ AcB ”⟩ A 2 WWalksNOn G B A c Edg G c B Edg G
13 7 8 12 3syl G FriendGraph A V B V c V ⟨“ AcB ”⟩ A 2 WWalksNOn G B A c Edg G c B Edg G
14 13 impl G FriendGraph A V B V c V ⟨“ AcB ”⟩ A 2 WWalksNOn G B A c Edg G c B Edg G
15 14 reubidva G FriendGraph A V B V ∃! c V ⟨“ AcB ”⟩ A 2 WWalksNOn G B ∃! c V A c Edg G c B Edg G
16 15 3adant3 G FriendGraph A V B V A B ∃! c V ⟨“ AcB ”⟩ A 2 WWalksNOn G B ∃! c V A c Edg G c B Edg G
17 6 16 mpbird G FriendGraph A V B V A B ∃! c V ⟨“ AcB ”⟩ A 2 WWalksNOn G B