Metamath Proof Explorer


Theorem frgr2wwlkn0

Description: In a friendship graph, there is always a path/walk of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 12-May-2021)

Ref Expression
Hypothesis frgr2wwlkeu.v V = Vtx G
Assertion frgr2wwlkn0 G FriendGraph A V B V A B A 2 WWalksNOn G B

Proof

Step Hyp Ref Expression
1 frgr2wwlkeu.v V = Vtx G
2 1 frgr2wwlkeu G FriendGraph A V B V A B ∃! c V ⟨“ AcB ”⟩ A 2 WWalksNOn G B
3 reurex ∃! c V ⟨“ AcB ”⟩ A 2 WWalksNOn G B c V ⟨“ AcB ”⟩ A 2 WWalksNOn G B
4 ne0i ⟨“ AcB ”⟩ A 2 WWalksNOn G B A 2 WWalksNOn G B
5 4 rexlimivw c V ⟨“ AcB ”⟩ A 2 WWalksNOn G B A 2 WWalksNOn G B
6 2 3 5 3syl G FriendGraph A V B V A B A 2 WWalksNOn G B