Metamath Proof Explorer


Theorem frgrconngr

Description: A friendship graph is connected, see remark 1 in MertziosUnger p. 153 (after Proposition 1): "An arbitrary friendship graph has to be connected, ... ". (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 1-Apr-2021)

Ref Expression
Assertion frgrconngr G FriendGraph G ConnGraph

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 2pthfrgr G FriendGraph k Vtx G n Vtx G k f p f k SPathsOn G n p f = 2
3 spthonpthon f k SPathsOn G n p f k PathsOn G n p
4 3 adantr f k SPathsOn G n p f = 2 f k PathsOn G n p
5 4 2eximi f p f k SPathsOn G n p f = 2 f p f k PathsOn G n p
6 5 2ralimi k Vtx G n Vtx G k f p f k SPathsOn G n p f = 2 k Vtx G n Vtx G k f p f k PathsOn G n p
7 2 6 syl G FriendGraph k Vtx G n Vtx G k f p f k PathsOn G n p
8 1 isconngr1 G FriendGraph G ConnGraph k Vtx G n Vtx G k f p f k PathsOn G n p
9 7 8 mpbird G FriendGraph G ConnGraph