Metamath Proof Explorer


Theorem frgreu

Description: Variant of frcond2 : Any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 12-May-2021) (Proof shortened by AV, 4-Jan-2022)

Ref Expression
Hypotheses frcond1.v V = Vtx G
frcond1.e E = Edg G
Assertion frgreu G FriendGraph A V C V A C ∃! b A b E b C E

Proof

Step Hyp Ref Expression
1 frcond1.v V = Vtx G
2 frcond1.e E = Edg G
3 1 2 frcond2 G FriendGraph A V C V A C ∃! b V A b E b C E
4 3 imp G FriendGraph A V C V A C ∃! b V A b E b C E
5 frgrusgr G FriendGraph G USGraph
6 5 adantr G FriendGraph A V C V A C G USGraph
7 simpl A b E b C E A b E
8 2 1 usgrpredgv G USGraph A b E A V b V
9 8 simprd G USGraph A b E b V
10 6 7 9 syl2an G FriendGraph A V C V A C A b E b C E b V
11 10 reueubd G FriendGraph A V C V A C ∃! b V A b E b C E ∃! b A b E b C E
12 4 11 mpbid G FriendGraph A V C V A C ∃! b A b E b C E
13 12 ex G FriendGraph A V C V A C ∃! b A b E b C E