Step |
Hyp |
Ref |
Expression |
1 |
|
frgrnbnb.e |
|
2 |
|
frgrnbnb.n |
|
3 |
|
frgrusgr |
|
4 |
2
|
eleq2i |
|
5 |
1
|
nbusgreledg |
|
6 |
5
|
biimpd |
|
7 |
4 6
|
syl5bi |
|
8 |
2
|
eleq2i |
|
9 |
1
|
nbusgreledg |
|
10 |
9
|
biimpd |
|
11 |
8 10
|
syl5bi |
|
12 |
7 11
|
anim12d |
|
13 |
12
|
imp |
|
14 |
|
eqid |
|
15 |
14
|
nbgrisvtx |
|
16 |
15 2
|
eleq2s |
|
17 |
14
|
nbgrisvtx |
|
18 |
17 2
|
eleq2s |
|
19 |
16 18
|
anim12i |
|
20 |
19
|
adantl |
|
21 |
1 14
|
usgrpredgv |
|
22 |
21
|
ad2ant2r |
|
23 |
|
ax-1 |
|
24 |
23
|
2a1d |
|
25 |
24
|
2a1d |
|
26 |
|
simpll |
|
27 |
|
simprrr |
|
28 |
27
|
adantr |
|
29 |
|
simprrl |
|
30 |
29
|
adantr |
|
31 |
|
necom |
|
32 |
31
|
biimpi |
|
33 |
32
|
adantl |
|
34 |
33
|
adantl |
|
35 |
28 30 34
|
3jca |
|
36 |
|
simprll |
|
37 |
36
|
adantr |
|
38 |
|
simprlr |
|
39 |
38
|
adantr |
|
40 |
|
necom |
|
41 |
40
|
biimpi |
|
42 |
41
|
adantr |
|
43 |
42
|
adantl |
|
44 |
37 39 43
|
3jca |
|
45 |
26 35 44
|
3jca |
|
46 |
45
|
ad4ant14 |
|
47 |
|
prcom |
|
48 |
47
|
eleq1i |
|
49 |
48
|
biimpi |
|
50 |
49
|
anim1ci |
|
51 |
50
|
adantl |
|
52 |
|
prcom |
|
53 |
52
|
eleq1i |
|
54 |
53
|
biimpi |
|
55 |
54
|
anim2i |
|
56 |
51 55
|
anim12i |
|
57 |
56
|
adantr |
|
58 |
14 1
|
4cyclusnfrgr |
|
59 |
46 57 58
|
sylc |
|
60 |
|
df-nel |
|
61 |
59 60
|
sylib |
|
62 |
61
|
pm2.21d |
|
63 |
62
|
ex |
|
64 |
63
|
com23 |
|
65 |
64
|
exp41 |
|
66 |
65
|
com25 |
|
67 |
3 66
|
mpcom |
|
68 |
67
|
com15 |
|
69 |
68
|
ex |
|
70 |
25 69
|
pm2.61ine |
|
71 |
70
|
imp |
|
72 |
71
|
com13 |
|
73 |
72
|
ex |
|
74 |
73
|
com25 |
|
75 |
74
|
ex |
|
76 |
14
|
nbgrcl |
|
77 |
76 2
|
eleq2s |
|
78 |
77
|
adantr |
|
79 |
78
|
adantl |
|
80 |
75 79
|
syl11 |
|
81 |
80
|
com34 |
|
82 |
81
|
impd |
|
83 |
82
|
adantl |
|
84 |
22 83
|
mpcom |
|
85 |
84
|
ex |
|
86 |
85
|
com25 |
|
87 |
86
|
com14 |
|
88 |
87
|
ex |
|
89 |
88
|
com15 |
|
90 |
13 20 89
|
mp2d |
|
91 |
90
|
ex |
|
92 |
91
|
com23 |
|
93 |
3 92
|
mpcom |
|
94 |
93
|
3imp |
|