Step |
Hyp |
Ref |
Expression |
1 |
|
frgrncvvdeq.v |
|
2 |
|
frgrncvvdeq.d |
|
3 |
|
ovexd |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
simpl |
|
8 |
7
|
ad2antlr |
|
9 |
|
eldifi |
|
10 |
9
|
adantl |
|
11 |
10
|
ad2antlr |
|
12 |
|
eldif |
|
13 |
|
velsn |
|
14 |
13
|
biimpri |
|
15 |
14
|
equcoms |
|
16 |
15
|
necon3bi |
|
17 |
12 16
|
simplbiim |
|
18 |
17
|
adantl |
|
19 |
18
|
ad2antlr |
|
20 |
|
simpr |
|
21 |
|
simpl |
|
22 |
21
|
adantr |
|
23 |
|
eqid |
|
24 |
1 4 5 6 8 11 19 20 22 23
|
frgrncvvdeqlem10 |
|
25 |
3 24
|
hasheqf1od |
|
26 |
|
frgrusgr |
|
27 |
26 7
|
anim12i |
|
28 |
27
|
adantr |
|
29 |
1
|
hashnbusgrvd |
|
30 |
28 29
|
syl |
|
31 |
26 10
|
anim12i |
|
32 |
31
|
adantr |
|
33 |
1
|
hashnbusgrvd |
|
34 |
32 33
|
syl |
|
35 |
25 30 34
|
3eqtr3d |
|
36 |
2
|
fveq1i |
|
37 |
2
|
fveq1i |
|
38 |
35 36 37
|
3eqtr4g |
|
39 |
38
|
ex |
|
40 |
39
|
ralrimivva |
|