Metamath Proof Explorer


Theorem frgrncvvdeq

Description: In a friendship graph, two vertices which are not connected by an edge have the same degree. This corresponds to claim 1 in Huneke p. 1: "If x,y are elements of (the friendship graph) G and are not adjacent, then they have the same degree (i.e., the same number of adjacent vertices).". (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 10-May-2021)

Ref Expression
Hypotheses frgrncvvdeq.v V = Vtx G
frgrncvvdeq.d D = VtxDeg G
Assertion frgrncvvdeq G FriendGraph x V y V x y G NeighbVtx x D x = D y

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v V = Vtx G
2 frgrncvvdeq.d D = VtxDeg G
3 ovexd G FriendGraph x V y V x y G NeighbVtx x G NeighbVtx x V
4 eqid Edg G = Edg G
5 eqid G NeighbVtx x = G NeighbVtx x
6 eqid G NeighbVtx y = G NeighbVtx y
7 simpl x V y V x x V
8 7 ad2antlr G FriendGraph x V y V x y G NeighbVtx x x V
9 eldifi y V x y V
10 9 adantl x V y V x y V
11 10 ad2antlr G FriendGraph x V y V x y G NeighbVtx x y V
12 eldif y V x y V ¬ y x
13 velsn y x y = x
14 13 biimpri y = x y x
15 14 equcoms x = y y x
16 15 necon3bi ¬ y x x y
17 12 16 simplbiim y V x x y
18 17 adantl x V y V x x y
19 18 ad2antlr G FriendGraph x V y V x y G NeighbVtx x x y
20 simpr G FriendGraph x V y V x y G NeighbVtx x y G NeighbVtx x
21 simpl G FriendGraph x V y V x G FriendGraph
22 21 adantr G FriendGraph x V y V x y G NeighbVtx x G FriendGraph
23 eqid a G NeighbVtx x ι b G NeighbVtx y | a b Edg G = a G NeighbVtx x ι b G NeighbVtx y | a b Edg G
24 1 4 5 6 8 11 19 20 22 23 frgrncvvdeqlem10 G FriendGraph x V y V x y G NeighbVtx x a G NeighbVtx x ι b G NeighbVtx y | a b Edg G : G NeighbVtx x 1-1 onto G NeighbVtx y
25 3 24 hasheqf1od G FriendGraph x V y V x y G NeighbVtx x G NeighbVtx x = G NeighbVtx y
26 frgrusgr G FriendGraph G USGraph
27 26 7 anim12i G FriendGraph x V y V x G USGraph x V
28 27 adantr G FriendGraph x V y V x y G NeighbVtx x G USGraph x V
29 1 hashnbusgrvd G USGraph x V G NeighbVtx x = VtxDeg G x
30 28 29 syl G FriendGraph x V y V x y G NeighbVtx x G NeighbVtx x = VtxDeg G x
31 26 10 anim12i G FriendGraph x V y V x G USGraph y V
32 31 adantr G FriendGraph x V y V x y G NeighbVtx x G USGraph y V
33 1 hashnbusgrvd G USGraph y V G NeighbVtx y = VtxDeg G y
34 32 33 syl G FriendGraph x V y V x y G NeighbVtx x G NeighbVtx y = VtxDeg G y
35 25 30 34 3eqtr3d G FriendGraph x V y V x y G NeighbVtx x VtxDeg G x = VtxDeg G y
36 2 fveq1i D x = VtxDeg G x
37 2 fveq1i D y = VtxDeg G y
38 35 36 37 3eqtr4g G FriendGraph x V y V x y G NeighbVtx x D x = D y
39 38 ex G FriendGraph x V y V x y G NeighbVtx x D x = D y
40 39 ralrimivva G FriendGraph x V y V x y G NeighbVtx x D x = D y