Metamath Proof Explorer


Theorem frgrncvvdeqlem1

Description: Lemma 1 for frgrncvvdeq . (Contributed by Alexander van der Vekens, 23-Dec-2017) (Revised by AV, 8-May-2021) (Proof shortened by AV, 12-Feb-2022)

Ref Expression
Hypotheses frgrncvvdeq.v1 V = Vtx G
frgrncvvdeq.e E = Edg G
frgrncvvdeq.nx D = G NeighbVtx X
frgrncvvdeq.ny N = G NeighbVtx Y
frgrncvvdeq.x φ X V
frgrncvvdeq.y φ Y V
frgrncvvdeq.ne φ X Y
frgrncvvdeq.xy φ Y D
frgrncvvdeq.f φ G FriendGraph
frgrncvvdeq.a A = x D ι y N | x y E
Assertion frgrncvvdeqlem1 φ X N

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1 V = Vtx G
2 frgrncvvdeq.e E = Edg G
3 frgrncvvdeq.nx D = G NeighbVtx X
4 frgrncvvdeq.ny N = G NeighbVtx Y
5 frgrncvvdeq.x φ X V
6 frgrncvvdeq.y φ Y V
7 frgrncvvdeq.ne φ X Y
8 frgrncvvdeq.xy φ Y D
9 frgrncvvdeq.f φ G FriendGraph
10 frgrncvvdeq.a A = x D ι y N | x y E
11 df-nel Y D ¬ Y D
12 3 eleq2i Y D Y G NeighbVtx X
13 11 12 xchbinx Y D ¬ Y G NeighbVtx X
14 8 13 sylib φ ¬ Y G NeighbVtx X
15 nbgrsym X G NeighbVtx Y Y G NeighbVtx X
16 14 15 sylnibr φ ¬ X G NeighbVtx Y
17 neleq2 N = G NeighbVtx Y X N X G NeighbVtx Y
18 4 17 ax-mp X N X G NeighbVtx Y
19 df-nel X G NeighbVtx Y ¬ X G NeighbVtx Y
20 18 19 bitri X N ¬ X G NeighbVtx Y
21 16 20 sylibr φ X N