Metamath Proof Explorer


Theorem frgrncvvdeqlem5

Description: Lemma 5 for frgrncvvdeq . The mapping of neighbors to neighbors applied on a vertex is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 23-Dec-2017) (Revised by AV, 10-May-2021)

Ref Expression
Hypotheses frgrncvvdeq.v1 V = Vtx G
frgrncvvdeq.e E = Edg G
frgrncvvdeq.nx D = G NeighbVtx X
frgrncvvdeq.ny N = G NeighbVtx Y
frgrncvvdeq.x φ X V
frgrncvvdeq.y φ Y V
frgrncvvdeq.ne φ X Y
frgrncvvdeq.xy φ Y D
frgrncvvdeq.f φ G FriendGraph
frgrncvvdeq.a A = x D ι y N | x y E
Assertion frgrncvvdeqlem5 φ x D A x = G NeighbVtx x N

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1 V = Vtx G
2 frgrncvvdeq.e E = Edg G
3 frgrncvvdeq.nx D = G NeighbVtx X
4 frgrncvvdeq.ny N = G NeighbVtx Y
5 frgrncvvdeq.x φ X V
6 frgrncvvdeq.y φ Y V
7 frgrncvvdeq.ne φ X Y
8 frgrncvvdeq.xy φ Y D
9 frgrncvvdeq.f φ G FriendGraph
10 frgrncvvdeq.a A = x D ι y N | x y E
11 simpr φ x D x D
12 riotaex ι y N | x y E V
13 10 fvmpt2 x D ι y N | x y E V A x = ι y N | x y E
14 11 12 13 sylancl φ x D A x = ι y N | x y E
15 14 sneqd φ x D A x = ι y N | x y E
16 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem3 φ x D ι y N | x y E = G NeighbVtx x N
17 15 16 eqtrd φ x D A x = G NeighbVtx x N